44 resultados para Immobilization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show a simple strategy to obtain all efficient enzymatic broelectrochemical device, in which urease was immobilized oil electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode Configuration. For comparison. the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward Urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate tons. Using the Michaelis-Menten kinetics equation, a K(M)(aPP) of 2.7 mmol L(-1) was obtained. indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with Surface pressure measurements; and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective determination of alcohol molecules either in aqueous solutions or in vapor phase is of great importance for several technological areas. In the last years, a number of researchers have reported the fabrication of highly sensitive sensors for ethanol detection, based upon specific enzymatic reactions occurring at the surface of enzyme-containing electrodes. In this study, the enzyme alcohol dehydrogenase (ADH) was immobilized in a layer-by-layer fashion onto Au-interdigitated electrodes (IDEs), in conjunction with layers of PAMAM dendrimers. The immobilization process was followed in Teal time using quartz crystal microbalance (QCM), indicating that an average mass of 52.1 ng of ADH was adsorbed at each deposition step. Detection was carried out using a novel strategy entirely based upon electrical capacitance measurements, through which ethanol could be detected at concentrations of 1 part per million by volume (ppmv). (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes have been applied to many fields as nanocarriers, especially in drug delivery as active molecules may be entrapped either in their aqueous interior or onto the hydrophobic surface. In this paper we describe the fabrication of layer-by-layer (LbL) films made with liposomes incorporating the anti-inflammatory ibuprofen. The liposomes were made with dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG) and palmitoyl oleoyl phosphatidyl glycerol (POPG). LbL films were assembled via alternate adsorption of the polyamidoamine dendrimer (PAMAM), generation 4, and liposomes containing ibuprofen. According to dynamic light scattering measurements, the incorporation of ibuprofen caused DPPC and DPPG liposonnes to become more stable, with a decrease in diameter from 140 to 74 nm and 132 to 63 nm, respectively. In contrast, liposomes from POPG became less stable, with an increase in size from 110 to 160 nm after ibuprofen incorporation. These results were confirmed by atomic force microscopy images of LbL films, which showed a large tendency to rupture for POPG liposomes. Film growth was monitored using nanogravimetry and UV-Vis spectroscopy, indicating that growth stops after 10 bilayers. The release of ibuprofen obtained with fluorescence measurements was slower for the liposomes, with decay times of 9.2 and 8.5 h for DPPG and POPG liposomes, respectively, than for the free drug with a decay time of 5.2 h. Ibuprofen could also be released from the LbL films made with DPPG and POPG liposomes, which is promising for further uses in patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the development of amperometric sensors based on poly(allylamine hydrochloride) (PAH) and lutetium bisphthalocyanine (LuPc(2)) films assembled using the Layer-by-Layer (LbL) technique. The films have been used as modified electrodes for catechol quantification. Electrochemical measurements have been employed to investigate the catalytic properties of the LuPc(2) immobilized in the LbL films. By chronoamperometry, the sensors present excellent sensitivity (20 nA mu M(-1)) in a wide linear range (R(2) = 0.994) up to 900 mu M and limit of detection (s/n = 3) of 37.5 x 10(-8) M for catechol. The sensors have good reproducibility and can be used at least for ten times. The work potential is +0.3 V vs. saturated calomel electrode (SCE). In voltammetry measurements, the calibration curve shows a good linearity (R(2) = 0.992) in the range of catechol up to 500 mu M with a sensitivity of 90 nA mu M(-1) and LD of 8 mu M. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial vesicles or liposomes composed of lipid bilayers have been widely exploited as building blocks for artificial membranes, in attempts to mimic membrane interaction with drugs and proteins and to investigate drug delivery processes. In this study we report on the immobilization of liposomes of 1,2-dipalmitoyi-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) in layer-by-layer (LbL) films, alternated with poly (amidoamine) G4 (PAMAM) dendrimer layers. The average size of the liposomes in solution was 120 nm as determined by dynamic light scattering, with their spherical shape being inferred from scanning electron microscopy (SEM) in cast films. LbL films containing up to 20 PAMAM/DPPG bilayers were assembled onto glass and/or silicon wafer substrates. The growth of the multilayers was achieved by alternately immersing the substrates into the PAMAM and DPPG solutions for 5 and 10 min, respectively. The formation of PAMAM/DPPG liposome multilayers and its ability to interact with BSA were confirmed by Fourier transform infrared spectroscopy (FTIR). The structural features and film thickness were obtained using X-ray diffraction and surface plasmon resonance (SPR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the immobilization of nanoparticles onto conducting substrates by using both electrostatic layer-by-layer and electrophoretic deposition (EPD) methods. These two techniques were compared in high-performance electrochromic electrodes based on mixed nickel hydroxide nanoparticles. In addition to easy handling, EPD seems to be the most suitable method for the immobilization of nanoparticles, leading to higher electrochromic efficiencies, lower response times and higher stability upon coloration and bleaching cycling. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.