286 resultados para IRREGULAR GALAXY IC-10
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Context. Dwarf irregular galaxies are relatively simple unevolved objects where it is easy to test models of galactic chemical evolution. Aims. We attempt to determine the star formation and gas accretion history of IC 10, a local dwarf irregular for which abundance, gas, and mass determinations are available. Methods. We apply detailed chemical evolution models to predict the evolution of several chemical elements (He, O, N, S) and compared our predictions with the observational data. We consider additional constraints such as the present-time gas fraction, the star formation rate (SFR), and the total estimated mass of IC 10. We assume a dark matter halo for this galaxy and study the development of a galactic wind. We consider different star formation regimes: bursting and continuous. We explore different wind situations: i) normal wind, where all the gas is lost at the same rate and ii) metal-enhanced wind, where metals produced by supernovae are preferentially lost. We study a case without wind. We vary the star formation efficiency (SFE), the wind efficiency, and the time scale of the gas infall, which are the most important parameters in our models. Results. We find that only models with metal-enhanced galactic winds can reproduce the properties of IC 10. The star formation must have proceeded in bursts rather than continuously and the bursts must have been less numerous than similar to 10 over the whole galactic lifetime. Finally, IC 10 must have formed by a slow process of gas accretion with a timescale of the order of 8 Gyr.
Resumo:
We employ the recently installed near-infrared Multi-Conjugate Adaptive Optics demonstrator (MAD) to determine the basic properties of a newly identified, old and distant, Galactic open cluster (FSR 1415). The MAD facility remarkably approaches the diffraction limit, reaching a resolution of 0.07 arcsec (in K), that is also uniform in a field of similar to 1.8 arcmin in diameter. The MAD facility provides photometry that is 50 per cent complete at K similar to 19. This corresponds to about 2.5 mag below the cluster main-sequence turn-off. This high-quality data set allows us to derive an accurate heliocentric distance of 8.6 kpc, a metallicity close to solar and an age of similar to 2.5 Gyr. On the other hand, the deepness of the data allows us to reconstruct (completeness-corrected) mass functions (MFs) indicating a relatively massive cluster, with a flat core MF. The Very Large Telescope/MAD capabilities will therefore provide fundamental data for identifying/analysing other faint and distant open clusters in the Galaxy III and IV quadrants.
Resumo:
Context. The luminous material in clusters of galaxies exists in two forms: the visible galaxies and the X-ray emitting intra-cluster medium. The hot intra-cluster gas is the major observed baryonic component of clusters, about six times more massive than the stellar component. The mass contained within visible galaxies is approximately 3% of the dynamical mass. Aims. Our aim was to analyze both baryonic components, combining X-ray and optical data of a sample of five galaxy clusters (Abell 496, 1689, 2050, 2631 and 2667), within the redshift range 0.03 < z < 0.3. We determined the contribution of stars in galaxies and the intra-cluster medium to the total baryon budget. Methods. We used public XMM-Newton data to determine the gas mass and to obtain the X-ray substructures. Using the optical counterparts from SDSS or CFHT we determined the stellar contribution. Results. We examine the relative contribution of galaxies, intra-cluster light and intra-cluster medium to baryon budget in clusters through the stellar-to-gas mass ratio, estimated with recent data. We find that the stellar-to-gas mass ratio within r(500) (the radius within which the mean cluster density exceeds the critical density by a factor of 500), is anti-correlated with the ICM temperature, which range from 24% to 6% while the temperature ranges from 4.0 to 8.3 keV. This indicates that less massive cold clusters are more prolific star forming environments than massive hot clusters.
Resumo:
Context. Rotation curves of interacting galaxies often show that velocities are either rising or falling in the direction of the companion galaxy. Aims. We seek to reproduce and analyse these features in the rotation curves of simulated equal-mass galaxies suffering a one-to-one encounter as possible indicators of close encounters. Methods. Using simulations of major mergers in 3D, we study the time evolution of these asymmetries in a pair of galaxies during the first passage. Results. Our main results are: (a) the rotation curve asymmetries appear right at pericentre of the first passage, (b) the significant disturbed rotation velocities occur within a small time interval, of similar to 0.5 Gyr h(-1), and, therefore, the presence of bifurcation in the velocity curve could be used as an indicator of the pericentre occurrence. These results are in qualitative agreement with previous findings for minor mergers and flybys.
Resumo:
Context. Observations in the cosmological domain are heavily dependent on the validity of the cosmic distance-duality (DD) relation, eta = D(L)(z)(1+ z)(2)/D(A)(z) = 1, an exact result required by the Etherington reciprocity theorem where D(L)(z) and D(A)(z) are, respectively, the luminosity and angular diameter distances. In the limit of very small redshifts D(A)(z) = D(L)(z) and this ratio is trivially satisfied. Measurements of Sunyaev-Zeldovich effect (SZE) and X-rays combined with the DD relation have been used to determine D(A)(z) from galaxy clusters. This combination offers the possibility of testing the validity of the DD relation, as well as determining which physical processes occur in galaxy clusters via their shapes. Aims. We use WMAP (7 years) results by fixing the conventional Lambda CDM model to verify the consistence between the validity of DD relation and different assumptions about galaxy cluster geometries usually adopted in the literature. Methods. We assume that. is a function of the redshift parametrized by two different relations: eta(z) = 1+eta(0)z, and eta(z) = 1+eta(0)z/(1+z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we consider the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical (isothermal) and spherical (non-isothermal) beta models. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. It was found that the elliptical beta model is in good agreement with the data, showing no violation of the DD relation (PDF peaked close to eta(0) = 0 at 1 sigma), while the spherical (non-isothermal) one is only marginally compatible at 3 sigma. Conclusions. The present results derived by combining the SZE and X-ray surface brightness data from galaxy clusters with the latest WMAP results (7-years) favors the elliptical geometry for galaxy clusters. It is remarkable that a local property like the geometry of galaxy clusters might be constrained by a global argument provided by the cosmic DD relation.
Resumo:
In this Letter, we propose a new and model-independent cosmological test for the distance-duality (DD) relation, eta = D(L)(z)(1 + z)(-2)/D(A)(z) = 1, where D(L) and D(A) are, respectively, the luminosity and angular diameter distances. For D(L) we consider two sub-samples of Type Ia supernovae (SNe Ia) taken from Constitution data whereas D(A) distances are provided by two samples of galaxy clusters compiled by De Filippis et al. and Bonamente et al. by combining Sunyaev-Zeldovich effect and X-ray surface brightness. The SNe Ia redshifts of each sub-sample were carefully chosen to coincide with the ones of the associated galaxy cluster sample (Delta z < 0.005), thereby allowing a direct test of the DD relation. Since for very low redshifts, D(A)(z) approximate to D(L)(z), we have tested the DD relation by assuming that. is a function of the redshift parameterized by two different expressions: eta(z) = 1 + eta(0)z and eta(z) = 1 +eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying a possible departure from the strict validity of the reciprocity relation (eta(0) = 0). In the best scenario (linear parameterization), we obtain eta(0) = -0.28(-0.44)(+0.44) (2 sigma, statistical + systematic errors) for the De Filippis et al. sample (elliptical geometry), a result only marginally compatible with the DD relation. However, for the Bonamente et al. sample (spherical geometry) the constraint is eta(0) = -0.42(-0.34)(+0.34) (3 sigma, statistical + systematic errors), which is clearly incompatible with the duality-distance relation.
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.
Resumo:
We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 <= [Fe/H] <= -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B < 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 angstrom. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.
Resumo:
This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson compact groups. We used Ha rotation curves (RCs) from high-resolution two-dimensional velocity fields of Fabry-Perot observations and the J-band photometry from the Two Micron All Sky Survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profiles, an isothermal core-like distribution, and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al. and 35 field galaxies of Spano et al. The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent of galaxy type and environment. We have found that core-like density profiles better fit the RCs than cuspy-like ones. No major differences have been found between field, cluster, and compact group galaxies with respect to their dark halo density profiles.
Resumo:
Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.
Resumo:
Context. Compact groups of galaxies are entities that have high densities of galaxies and serve as laboratories to study galaxy interactions, intergalactic star formation and galaxy evolution. Aims. The main goal of this study is to search for young objects in the intragroup medium of seven compact groups of galaxies: HCG 2, 7, 22, 23, 92, 100 and NGC 92 as well as to evaluate the stage of interaction of each group. Methods. We used Fabry-Perot velocity fields and rotation curves together with GALEX NUV and FUV images and optical R-band and HI maps. Results. (i) HCG 7 and HCG 23 are in early stages of interaction; (ii) HCG 2 and HCG 22 are mildly interacting; and (iii) HCG 92, HCG 100 and NGC 92 are in late stages of evolution. We find that all three evolved groups contain populations of young blue objects in the intragroup medium, consistent with ages < 100 Myr, of which several are younger than < 10 Myr. We also report the discovery of a tidal dwarf galaxy candidate in the tail of NGC 92. These three groups, besides containing galaxies that have peculiar velocity fields, also show extended HI tails. Conclusions. Our results indicate that the advanced stage of evolution of a group, together with the presence of intragroup HI clouds, may lead to star formation in the intragroup medium. A table containing all intergalactic HII regions and tidal dwarf galaxies confirmed to date is appended.
Resumo:
We provide evidence that indicates the star cluster Pfleiderer 2, which is projected in a rich field, as a newly identified Galactic globular cluster. Since it is located in a crowded field, core extraction and decontamination tools were applied to reveal the cluster sequences in B, V, and I color-magnitude diagrams (CMDs). The main CMD features of Pfleiderer 2 are a tilted red giant branch and a red horizontal branch, indicating a high metallicity around solar. The reddening is E(B - V) = 1.01. The globular cluster is located at a distance of d(circle dot) = 16 +/- 2 kpc from the Sun. The cluster is located 2.7 kpc above the Galactic plane and at a distance of R(GC) = 9.7 kpc from the Galactic center, which is unusual for a metal-rich globular cluster.
Resumo:
Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.