120 resultados para ION SELECTIVE ELECTRODE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been no comparison of fluoride (F) intake by pre-school children receiving more traditional sources of systemic F. The aim of this study was to estimate the dietary F intake by children receiving F from artificially fluoridated water (AFW-Brazil, 0.6-0.8 mg F/L), naturally fluoridated water (NFW-Brazil, 0.6-0.9 mg F/L), fluoridated salt (FS-Peru, 180-200 mg F/Kg), and fluoridated milk (FM-Peru, 0.25 mg F). Children (n = 21-26) aged 4-6 yrs old participated in each community. A non-fluoridated community (NoF) was evaluated as the control population. Dietary F intake was monitored by the ""duplicate plate"" method, with different constituents (water, other beverages, and solids). F was analyzed with an ion-selective electrode. Data were tested by Kruskall-Wallis and Dunn`s tests (p < 0.05). Mean (+/- SD) F intake (mg/Kg b.w./day) was 0.04 +/- 0.01(b), 0.06 +/- 0.02(a,b), 0.05 +/- 0.02(a,b), 0.06 +/- 0.01(a), and 0.01 +/- 0.00(c) for AFW/NFW/FS/FM/NoF, respectively. The main dietary contributors for AFW/NFW and FS/FM/NoF were water and solids, respectively. The results indicate that the dietary F intake must be considered before a systemic method of fluoridation is implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been no comparison between fluoride concentrations in urine and nails of children exposed to different sources of systemic fluoride. The aim of this study was to compare the relationship between fluoride intake with urinary fluoride excretion and fluoride concentrations in fingernails and toenails of children receiving fluoride from artificially fluoridated water (0.6-0.8 mg F/L, n = 25), naturally fluoridated water (0.6-0.9 mg F/L, n = 21), fluoridated salt (180-200 mg F/Kg, n = 26), and fluoridated milk (0.25 mg F, n = 25). A control population was included (no systemic fluoride, n = 24). Fluoride intake from diet and dentifrice, urinary fluoride excretion, and fluoride concentrations in fingernails/toenails were evaluated. Fluoride was analyzed with an ion-selective electrode. Urinary fluoride excretion in the control community was significantly lower when compared with that in the fluoridated cities, except for the naturally fluoridated community. However, the same pattern was not as evident for nails. Both urinary fluoride output and fluoride concentrations in fingernails/toenails were significantly correlated to total fluoride intake. However, the correlation coefficients for fluoride intake and urinary fluoride output were lower (r = 0.28, p < 0.01) than those observed for fingernails/toenails (r = 0.36, p < 0.001), suggesting that nails might be slightly better indicators of fluoride intake at the individual level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The title compound, C(13)H(9)F(3)N(2)O(2)S, crystallizes with two independent molecules in the asymmetric unit. The central thiourea core is roughly coplanar with the furan and benzene rings, showing O-C-N-C(S) torsion angles of 2.3 (4) and -11.4 (2) degrees and (S) C -N-C-C torsion angles of -2.4 (4) and -28.8 (4) degrees, respectively, in the two independent molecules. The trans-cis geometry of the thiourea fragment is stabilized by an intramolecular N-H center dot center dot center dot O hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In the crystal structure, intermolecular N-H center dot center dot center dot S hydrogen bonds form centrosymmetric dimers extending along the b axis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: This study assessed the percentage of the amount of dentifrice loaded onto the toothbrush that is ingested by children, taking into account age, the amount of dentifrice used during toothbrushing, and the dentifrice flavor. Methods: The sample consisted of 155 children of both genders attending public kindergartens and schools in Bauru, Brazil, divided into 5 groups (n = 30-32) of children aged 2, 3, 4, 5 and 6 years old. The dentifrices used were Sorriso(TM) (1219 ppm F, peppermint-flavored) and Tandy(TM) (959 ppm F, tutti-frutti-flavored). The assessment of fluoride intake from dentifrices was carried out six times for each child, using 0.3, 0.6, and 1.2 g of each dentifrice, following a random, crossover distribution. Brushing was performed by the children or their parents/caregivers according to the home habits and under the observation of the examiner. Fluoride present in the expectorant and on toothbrush was analyzed with an ion-specific electrode after HMDS-facilitated diffusion. Fluoride ingestion was indirectly derived. Results were analyzed by 3-way repeated-measures anova and Tukey`s tests (P < 0.05) using the percent dentifrice ingested as response variable. Results: Age and percent dentifrice ingested for both dentifrices, and the three amounts used were inversely related (P < 0.0001). Percent dentifrice ingested was significantly higher after the use of Tandy(TM) under all conditions of the study when compared with Sorriso(TM) (P < 0.0001). Significant differences were observed when brushing with 0.3 g when compared with 1.2 g, for both dentifrices tested (P < 0.05). Conclusions: The results indicate that all variables tested must be considered in preventive measures aiming to reduce the amount of fluoride ingested by young children.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While evidence of ion reduction at the cathode has been given, proof of anode activity, in order to account completely for the redox-type electrochemical mechanism so far postulated to originate the electric field-induced non-spontaneous crystallization observed in glasses, is still lacking. This study demonstrates that direct contact of both cathode and anode electrodes with the material is mandatory to promote crystal nucleation. The electrochemical process of concern is established here to involve a solid-state process, electrolytic in nature. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layer-by-layer (LbL) films from K(2)Nb(6)O(17)(2-) and polyallylamine (PAH) and dip-coating films of H(2)K(2)Nb(6)O(17) were prepared on a fluorine-doped tin-oxide (FTO)-coated glass. The atomic force microscopy (AFM) images were carried out for morphological characterization of both materials. The real surface area and the roughness factor were determined on the basis of pseudocapacitive processes involved in the electroreduction/electrooxidation of gold layers deposited on these films. Next, lithium ion insertion into these materials was examined by means of electrochemical and spectroelectrochemical measurements. More specifically, cyclic voltammetry and current pulses under visible light beams were used to investigate mass transport and chromogenic properties. The lithium ion diffusion coefficient (D(Li)) within the LbL matrix is significantly higher than that within the dip-coating film, ensuring high storage capacity of lithium ions in the self-assembled electrode. Contrary to the LbL film, the potentiodynamic profile of absorbance change (Delta A) as a function of time is not similar to that obtained in the case of current density for the dip-coating film. Aiming at analyzing the rate of the coloration front associated with lithium ion diffusion, a spectroelectrochemical method based on the galvanostatic intermittent titration technique (GITT) was employed so as to determine the ""optical"" diffusion coefficient (D(op)). In the dip-coating film, the method employed here revealed that the lithium ion rate is higher in diffusion pathways formed from K(2)Nb(6)O(17)(2-) sites that contribute more significantly to Delta A. Meanwhile, the presence of PAH contributed to the increased ionic mobility in diffusion pathways in the LbL film, with low contribution to the electrochromic efficiency. These results aided a better understanding of the potentiodynamic profile of the temporal change of absorbance and current density during the insertion/deinsertion of lithium ions into the electrochromic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine modified carbon nanotube electrode for the quantitative determination of dopamine in 0.2 mol L-1 phosphate buffer contaminated with high concentration of ascorbic acid. The electrode surface was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy which showed a modified surface presenting a charge transfer resistance of 500 Omega, against the 16.46 k Omega value found for the bare glassy carbon surface. A pseudo rate constant value of 5.4 x 10(-4) cm s(-1) for dopamine oxidation was calculated. Voltammetric experiments showed a shift of the peak potential of DA oxidation to less positive value at 390 mV as compared with that of a bare GC electrode at 570 mV. The electrochemical determination of dopamine, in presence of ascorbic acid in concentrations up to 0.1 mol L-1 by differential pulse voltarnmetry, yielded a detection limit as low as 2.56 x 10(-7) mol L-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH(3))(4)(Ist)SO(4)](+) to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH(3))(4)(Ist)SO(4)](+) complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO. (C) 2011 Elsevier Ltd. All rights reserved.