41 resultados para INTRINSIC VOLTAGE GAIN
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The trapezium is often a better approximation for the FinFET cross-section shape, rather than the design-intended rectangle. The frequent width variations along the vertical direction, caused by the etching process that is used for fin definition, may imply in inclined sidewalls and the inclination angles can vary in a significant range. These geometric variations may cause some important changes in the device electrical characteristics. This work analyzes the influence of the FinFET sidewall inclination angle on some relevant parameters for analog design, such as threshold voltage, output conductance, transconductance, intrinsic voltage gain (A V), gate capacitance and unit-gain frequency, through 3D numeric simulation. The intrinsic gain is affected by alterations in transconductance and output conductance. The results show that both parameters depend on the shape, but in different ways. Transconductance depends mainly on the sidewall inclination angle and the fixed average fin width, whereas the output conductance depends mainly on the average fin width and is weakly dependent on the sidewall inclination angle. The simulation results also show that higher voltage gains are obtained for smaller average fin widths with inclination angles that correspond to inverted trapeziums, i.e. for shapes where the channel width is larger at the top than at the transistor base because of the higher attained transconductance. When the channel top is thinner than the base, the transconductance degradation affects the intrinsic voltage gain. The total gate capacitances also present behavior dependent on the sidewall angle, with higher values for inverted trapezium shapes and, as a consequence, lower unit-gain frequencies.
Resumo:
FinFETs are recognized as promising candidates for the CMOS nanometer era. In this paper the most recent results for cryogenic operation of FinFETs will be demonstrated with special emphasis on analog applications. Threshold voltage, subthreshold slope and carrier mobility will be studied. Also some important figures of merit for analog circuit operation as for readout electronics, such as transconductance, output conductance and intrinsic voltage gain will be covered. It is demonstrated that the threshold voltage of undoped narrow FinFETs is less temperature-dependent than for a planar single-gate device with similar doping concentration. The temperature reduction improves the transconductance over drain current ratio in any operational region. On the other hand, the output conductance is degraded when the temperature is reduced. The combination of these effects shows that the intrinsic gain of a L = 90 nm FinFET is degraded by 2 dB when the temperature reduces from 300 K to 100 K. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.
Resumo:
The harmonic distortion (HD) exhibited by un-strained and biaxially strained fin-shaped field-effect transistors operating in saturation as single-transistor amplifiers has been investigated for devices with different channel lengths L and fin widths W(fin). The study has been performed through device characterization, 3-D device simulations, and modeling. Nonlinearity has been evaluated in terms of second- and third-order HDs (HD2 and HD3, respectively), and a discussion on its physical sources has been carried out. Also, the influence of the open-loop voltage gain AV in HD has been observed.
Resumo:
This work studies the operation of source-follower buffers implemented with standard and graded-channel (GC) fully depleted (FD) SCI nMOSFETs at low temperatures. The analysis is performed by comparing the voltage gain of buffers implemented with GC and standard SOI nMOS transistors considering devices with the same mask channel length and same effective channel length. It is shown that the use of GC devices allows for achieving improved gain in all inversion levels in a wide range of temperatures. In addition, this improvement increases as temperature is reduced. It is shown that GC transistors can provide virtually constant gain, while for standard devices, the gain departs from the maximum value depending on the temperature and inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to study the reasons for the enhanced gain of GC MOSFETs at low temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.
Resumo:
OBJETIVO: O objetivo deste trabalho foi estudar a grandeza practical peak voltage (PPV), determinada a partir da forma de onda de tensão aplicada a tubos radiológicos, e compará-la com algumas definições de kVp para diferentes tipos de geradores: monofásico (onda completa, clínico), trifásico (seis pulsos, clínico) e potencial constante (industrial). MATERIAIS E MÉTODOS: O trabalho envolveu a comparação do PPV medido invasivamente (utilizando um divisor de tensão) com a resposta de dois medidores comerciais não invasivos, além dos valores de outras grandezas usadas para medição da tensão de pico aplicada ao tubo de raios X, e a análise da variação do PPV com a ondulação percentual da tensão (ripple). RESULTADOS: Verificou-se que a diferença entre o PPV e as definições mais comuns de tensão de pico aumenta com o ripple. Os valores de PPV variaram em até 3% e 5%, respectivamente, na comparação entre medições invasivas e não invasivas feitas com os equipamentos trifásico e monofásico. CONCLUSÃO: Os resultados demonstraram que a principal grandeza de influência que afeta o PPV é o ripple da tensão. Adicionalmente, valores de PPV obtidos com medidores não invasivos devem ser avaliados considerando que eles dependem da taxa de aquisição e da forma de onda adquirida pelo instrumento.
Resumo:
PURPOSE: To analyze the usefulness of the weight gain/height gain ratio from birth to two and three years of age as a predictive risk indicator of excess weight at preschool age. METHODS: The weight and height/length of 409 preschool children at daycare centers were measured according to internationally recommended rules. The weight values and body mass indices of the children were transformed into a z-score per the standard method described by the World Health Organization. The Pearson correlation coefficients (rP) and the linear regressions between the anthropometric parameters and the body mass index z-scores of preschool children were statistically analyzed (alpha = 0.05). RESULTS: The mean age of the study population was 3.2 years (± 0.3 years). The prevalence of excess weight was 28.8%, and the prevalence of overweight and obesity was 8.8%. The correlation coefficients between the body mass index z-scores of the preschool children and the birth weights or body mass indices at birth were low (0.09 and 0.10, respectively). There was a high correlation coefficient (rP = 0.79) between the mean monthly gain of weight and the body mass index z-score of preschool children. A higher coefficient (rP = 0.93) was observed between the ratio of the mean weight gain per height gain (g/cm) and the preschool children body mass index z-score. The coefficients and their differences were statistically significant. CONCLUSION: Regardless of weight or length at birth, the mean ratio between the weight gain per g/cm of height growth from birth presented a strong correlation with the body mass index of preschool children. These results suggest that this ratio may be a good indicator of the risk of excess weight and obesity in preschool-aged children.
Resumo:
Using differential x-ray absorption spectroscopy (DiffXAS) we have measured and quantified the intrinsic, atomic-scale magnetostriction of Fe(81)Ga(19). By exploiting the chemical selectivity of DiffXAS, the Fe and Ga local environments have been assessed individually. The enhanced magnetostriction induced by the addition of Ga to Fe was found to originate from the Ga environment, where lambda(gamma,2)(approximate to (3/2)lambda(100)) is 390 +/- 40 ppm. In this environment, < 001 > Ga-Ga pair defects were found to exist, which mediate the magnetostriction by inducing large strains in the surrounding Ga-Fe bonds. For the first time, intrinsic, chemically selective magnetostrictive strain has been measured and quantified at the atomic level, allowing true comparison with theory.
Resumo:
Fin field effect transistors (FinFETS) are silicon-on-insulator (SOI) transistors with three-dimensional structures. As a result of some fabrication-process limitations (as nonideal anisotropic overetch) some FinFETs have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections, as expected. This geometric alteration results in some device issues, like carrier profile, threshold voltage, and corner effects. This work analyzes these consequences based on three-dimensional numeric simulation of several dual-gate and triple-gate FinFETs. The simulation results show that the threshold voltage depends on the sidewall inclination angle and that this dependence varies according to the body doping level. The corner effects also depend on the inclination angle and doping level. (C) 2008 The Electrochemical Society.
Resumo:
The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.
Resumo:
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
Resumo:
We consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy.