218 resultados para INTESTINAL NEMATODE INFECTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naive Nellore calves infected with Haemonchus placei, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 H. placei 13 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-gamma, MCP-1, lysozyme, pepsinogen and TNF-alpha genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-alpha were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-alpha was down-regulated (p < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (p > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.
Resumo:
The experiment was conducted to investigate the dynamics of infection by gastrointestinal nematodes during the periparturition period in cows. One hundred and six beef cows were divided into two groups: G I was formed by 42 cows of one and two parturitions, and G2 by 76 cows of three or more parturitions. From the 120 days pre partum until the 90 days post partum, feces were collected for faecal egg counts (EPG) while blood was collected to determine the packed cell volume and hemoglobin levels of each animal, with monthly intervals. In the same intervals the body condition scores (BCS) were evaluated. The mean values standard deviation of the EPG for Cl were equal to 19.4 +/- 42.9, and for G2 31.1 +/- 68.0. No significant differences were observed between Cl and G2 in relation to EPC; and hematological parameters, which remained within normal patterns for both groups. The two groups had higher counts of EPG in the post partum period than in the pre partum period, with averages of 32.5 +/- 55.5 and 51.5 +/- 84.8 for groups Cl and G2, respectively. A significant difference (p < 0.05) in the parameters was observed when comparing the pre and post partum within each group studied resulting in declining values of blood and body score and an increase in EPG in the post partum. The results suggest that the cows may be more susceptible to infection by nematodes from giving birth up to 90 days post partum. However, adult cows, when well-managed, are not an important factor in the epidemiology of gastrointestinal nematodes, even in the post partum period.
Resumo:
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Resumo:
Background: Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings: We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-gamma, TNF-alpha and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion: This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Resumo:
This trial was carried out in Piracicaba, Sao Paulo State. Brazil. to comparatively evaluate the degree of resistance to naturally acquired gastrointestinal nematode infections in sheep of the following genetic groups purebred Santa Ines (SI), SI crossbred with Dorper (DO x SI), lie de France (IF x SI), Suffolk (SU x SI), and Texel (TE < SI) Fifteen ewes from each group were raised indoors until 12 months of age. At this age, they were moved to pasture that was naturally contaminated by nematode infective larvae and were evaluated from December to May. 2007. Rainfall ranged from 267 mm in January to 37 mm in April Maximum and minimum mean temperatures ranged from 32 5 degrees C to 19 0 degrees C in March and from 25.9 degrees C to 12.8 degrees C in May. There was an increase in the mean number of eggs per gram of feces (EPG) after animals were placed on pasture with significant difference between the SI (80 EPG) and IF x SI (347 EPG) groups in January: and the DO x SI (386 EPG) and TE x SI (258 EPG) groups in May. The highest mean fecal egg count (FEC), 2073 EPG, was recorded for the TE x SI group in February. All groups showed a progressive reduction in body weight throughout the experiment of 12.0% (TE x SI) to 15.9% (SU x SI). In general. the animals with the highest FEC presented the lowest packed cell volumes (PCV): the highest correlation coefficient between FEC x PCV occurred in the SU x SI sheep in January (r = -0.70; P < 0.01). Similarly, there was an inverse relationship between FEC and blood eosinophil Values, with the highest correlation coefficient in the TE x SI sheep in February (r = -0.64; P < 0.05). Immunoglobulin G (IgG) levels against Haemonchus contortus antigens increased in all groups as a result of the exposure to parasites and remained relatively constant until the end of the study, with the exceptions of SU x SI and TE x SI, which showed a rise in IgG levels during the last sampling that coincided with a reduction in mean FEC. In conclusion. crossbreeding Santa Ines sheep with any of the breeds evaluated can result in a production increase and the maintenance of a satisfactory degree of infection resistance, especially against H. contortus and Trichostrongylus colubriformis. the major nematodes detected in this flock. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sm14 and paramyosin are two major Schistosoma mansoni vaccine candidate antigens. Recently, we have identified Sm14 and paramyosin epitopes that are recognized by T cells of resistant individuals living in endemic areas for schistosomiasis. Herein, mice were immunized with these peptides separately or in association in order to evaluate their vaccine potential. Immunization of mice with Sm14 peptides alone or mixed with paramyosin peptides was able to induce 26%-36.7% or 28%-29.2% of worm burden reduction, 67% or 46% of intestinal eggs reduction and also 54%-61% or 43%-52% of liver pathology reduction, respectively. Protection was associated with a Th1 type of immune response induced by Sm14 peptide immunization. In contrast, paramyosin peptide vaccination did not engender protective immunity or liver pathology reduction and immunization was associated with a Th2 type of immune response. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present study, investigated the mechanisms involved in the immune responses of Major Histocompatibility Complex class I or class II knockout mice, following Strongyloides venezuelensis infection. Wild-type C57BL/6 (WT), MHC II(-/-) and MHC I(-/-) mice were individually inoculated with 3000 larvae (U) of S. venezuelensis and sacrificed on days 1, 3, 5, 8, 13 and 21 post-infection (p.i.). Samples of blood, lungs and small intestines were collected. The tissue samples were stained with hematoxylineosin for the pathological analysis. The presence of the parasite was demonstrated by immunoperoxidase analysis. MHC II(-/-) mice presented a significantly higher number of adult worms recovered from the small intestine on day 5 p.i. and presented elevated numbers of eggs in the feces. The infection by S. venezuelensis was completely eliminated 13 days after infection in WT as well as in MHC I(-/-) mice. In MHC II(-/-) mice, eggs and adult worms were still found on day 21 p.i., however, there was a significant reduction in their numbers. In the lung, the parasite was observed in MHC I(-/-) on day 1 p.i. and in MHC II(-/-) mice on days 1 and 5 p.i. In the small intestine of WT mice, a larger number of parasites were observed on day 8 p.i. and their absence was observed after day 13 p.i. Through immunohistochemistry analysis, the parasite was detected in the duodenum of WT on days 5 and 8 p.i., and in knockout mice on days 5, 8 and 13 p.i.; as well as in posterior portions of the small intestine in MHC I(-/-) and MHC II(-/-) on day 13 p.i., a finding which was not observed in WT mice. We concluded that immunohistochemistry analysis contributed to a more adequate understanding of the parasite localization in immunodeficient hosts and that the findings aid in the interpretation of immunopathogenesis in Strongyloides infection. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.
Resumo:
In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins` increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPEC.
Resumo:
Members of the genera Bacteroides and Parabacteroides are important constituents of both human and animal intestinal microbiota, and are significant facultative pathogens. In this study, the ability of Bacteroides spp. and Parabacteroides distasonis isolated from both diarrhoeal and normal stools (n = 114) to adhere to and invade HEp-2 cells was evaluated. The presence of putative virulence factors such as capsule and fimbriae was also investigated. Adherence to HEp-2 cells was observed in 75.4% of the strains, which displayed non-localized clusters. Invasion was observed in 37.5% and 26% of the strains isolated from diarrhoeal and non-diarrhoeal stools, respectively. All strains displayed a capsule, whereas none of them showed fimbriae-like structures. This is the first report of the ability of Bacteroides spp. and P. distasonis to adhere to and invade cultured HEp-2 epithelial cells.
Resumo:
Control of Haemonchus placei, one of the most important cattle nematodes in Brazil, relies on the use of anthelmintics. However, there is a need for integrated control, which includes active immunization. The aim of this work was to assess the protection afforded to calves by immunization with adult H. placei extracts against a high-dose challenge infection, a condition frequently found in the tropics. Holstein calves aged 8-10 months were immunized four times with intestinal extracts (Group D) or with a Triton X-100-soluble fraction of adult H. placei (Group A), challenge-infected with 120,000 infective larvae and sacrificed 40 days later. Immunized animals had higher IgG titers than the controls against tested fractions after the 2nd immunization, peaking after the 4th. Sera from both immunized groups recognized bands of similar apparent mass in both antigenic preparations, some of which were similar in molecular weight to Haemonchus contortus antigens with known protective effect to sheep. Egg counts were 49% and 57% lower in Groups A and D than in controls, respectively. High levels of protection were observed in two of the four calves in Group D, as evidenced by very low worm numbers recovered at necropsy, absence of eggs in the uteri of the recovered females and reduced worm length. Group D animals also showed milder signs of anemia than the other infected animals. Results demonstrate that protection against homologous high-dose challenge can be achieved by immunizing calves with H. placei gut antigens. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study describes vancomycin prescribing patterns in an average complexity hospital and compare the guidelines proposed by the Hospital Infection Control Practices Advisory Committee (HICPAC). The study was conducted in a 256-bed secondary-care hospital. Data were collected of all patients given vancomycin from March 2003 to February 2004, using a standardized chart-extraction form designed. Appropriate and inappropriate use was reviewed according to the Hospital Infection Control Practices Advisory Committee (HICPAC) guidelines on prudent vancomycin use. Out of 118 prescriptions, 95 (80.5%) were considered appropriate. Out of these 95 orders, 77 (81.1%) were administered for empiric treatment of suspected Gram-positive infections, 17 (17.9%) were administered for treatment of proven Gram-positive infections (76.5% identified as Staphyloccocus aureus-like agents) and 1 (1.0%) for beta-lactam allergy. The majority of the patients (96.6%) had recently used an antimicrobial medication (3 months). The mean pre-treatment hospitalization period was 11±10 days. Out of the 118 treatments, 67 (56.8%) were for nosocomial infections. The more frequent indications for vancomycin use were pneumonia (48.3%) and primary sepsis (18.6%), accounting for more than 66% of all treatments. No restriction policy was suggested because vancomycin use was considered adequate in the majority of the treatment cases. The broad empiric use of this antimicrobial was greater than expected in the institution and its use should be revised.
Resumo:
INTRODUCTION: The antibacterial effect of ozone (O3) has been described in the extant literature, but the role of O3 therapy in the treatment of certain types of infection remains controversial. OBJECTIVES: To evaluate the effect of intraperitoneal (i.p.) O3 application in a cecal ligation/puncture rat model on interleukins (IL-6, IL-10) and cytokine-induced neutrophil chemoattractant (CINC)-1 serum levels, acute lung injury and survival rates. METHODS: Four animal groups were used for the study: a) the SHAM group underwent laparotomy; b) the cecal ligation/puncture group underwent cecal ligation/puncture procedures; and c) the CLP+O2 and CLP+O3 groups underwent CLP+ corresponding gas mixture infusions (i.p.) throughout the observation period. IL-6, CINC-1 and IL-10 concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Acute lung injury was evaluated with the Evans blue dye lung leakage method and by lung histology. P<0.05 was considered significant. RESULTS: CINC-1 was at the lowest level in the SHAM group and was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group. IL-10 was lower for the SHAM group vs. the other three groups, which were similar compared to each other. IL-6 was lower for the SHAM group vs. all other groups, was lower for the CLP+O3 or CLP+O2 group vs. the cecal ligation/puncture group, and was similar for the CLP+O3 group vs. the CLP+O2 group. The lung histology score was lower for the SHAM group vs. the other groups. The Evans blue dye result was lower for the CLP+O3 group vs. the CLP+O2 group and the cecal ligation/puncture group but similar to that of the SHAM group. The survival rate for the CLP+O3 group was lower than for the SHAM group and similar to that for the other 2 groups (CLP and CLP+O2). CONCLUSION: Ozone therapy modulated the inflammatory response and acute lung injury in the cecal ligation/puncture infection model in rats, although there was no improvement on survival rates.