3 resultados para INTERVAL EXCHANGE TRANSFORMATIONS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We study the existence of transit we exchange transformations with flips defined on the unit circle S(1). We provide a complete answer to the question of whether there exists a transitive exchange transformation of S(1) defined on a subintervals and having f flips.
Resumo:
University of Sao Paulo (USP)
Resumo:
We define topological and measure-theoretic mixing for nonstationary dynamical systems and prove that for a nonstationary subshift of finite type, topological mixing implies the minimality of any adic transformation defined on the edge space, while if the Parry measure sequence is mixing, the adic transformation is uniquely ergodic. We also show this measure theoretic mixing is equivalent to weak ergodicity of the edge matrices in the sense of inhomogeneous Markov chain theory.