3 resultados para INTERSTELLAR DUST
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a ""Ribbon"" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.
Resumo:
Quasi-simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15 degrees N, 23.5 degrees W) and in the far field (Manaus, Amazon basin, Brazil, 2.5 degrees S, 60 degrees W) of the long-range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long-distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well-mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke. Citation: Ansmann, A., H. Baars, M. Tesche, D. Muller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo (2009), Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest, Geophys. Res. Lett., 36, L11802, doi: 10.1029/2009GL037923.
Resumo:
Some aerosol particles, known as ice nuclei, can initiate ice formation in clouds, thereby influencing precipitation, cloud dynamics and the amount of incoming and outgoing solar radiation. In the absence of biomass burning, aerosol mass concentrations in the Amazon basin are low(1). Tropical forests emit primary biological particles directly into the atmosphere; secondary organic aerosols form from the emission and oxidation of biogenic gases(2). In addition, particles derived from biomass burning in central Africa, marine aerosols, and windblown dust from North Africa(3-5) often reach the central part of the Amazon basin during the wet season. The contribution of these aerosol sources to ice nucleation in the region is uncertain. Here we present observations of the concentration and elemental composition of ice nuclei in the Amazon basin during the wet season. Using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, we show that ice nuclei are primarily composed of carbonaceous material and dust. We show that biological particles dominate the carbonaceous fraction, whereas import of Saharan dust explains the intermittent appearance of dust-containing nuclei. We conclude that ice-nucleus concentration and abundance can be explained almost entirely by local emissions of biological particles supplemented by import of Saharan dust. Using a simple model, we tentatively suggest that the contribution of local biological particles to ice nucleation is increased at higher atmospheric temperatures, whereas the contribution of dust particles is increased at lower temperatures.