11 resultados para INITIATOR
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A study was performed in order to determine the efficiency of the simultaneous use of the photoinitiators phenylpropanedione (PPD) and camphorquinone (CQ) in the polymerization of acrylic polymers and evaluate possible mechanisms leading to synergism or antagonism. It was found that efficiencies of both initiators taken individually are higher than that of their mixture, indicating that when both dyes are used simultaneously there will be an energy transfer from the more efficient initiator (CQ) to the less efficient one (PPD). Also, there was no proof of any reaction between the amine present in the CQ formulation and the PPD excited state.
Resumo:
The kinetics of the solution free radical polymerization of N-vinylcaprolactam, in 1,4-dioxane and under various polymerization conditions was studied. Azobisisobutyronitrile and 3-mercaptopropionic acid were used as initiator and as chain transfer agent (CTA), respectively. The influence of monomer and initiator concentrations and polymerization temperature on the rate of polymerizations (R(p)) was investigated. In general, high conversions were obtained. The order with respect to initiator was consistent with the classical kinetic rate equation, while the order with respect to the monomer was greater than unity. The overall activation energy of 53.6 kJ mol(-1) was obtained in the temperature range 60-80 degrees C. The decreasing of the absolute molecular weights when increasing the CIA concentration was confirmed by GPC/SEC/LALS analyses. It was confirmed by UV-visible analyses the effect of molecular weights on the lower critical solution temperature of the polymers. It was also verified that the addition of the CTA influenced the kinetic of the polymerizations. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 118: 229-240, 2010
Resumo:
The photoinitiated polymerization of methyl methacrylate using the mixtures of camphorquinone (CQ) and acylphosphine oxides (monoacylphosphine oxide, MAPO or bisacylphosphine oxide,BAPO) was studied to determine the possible synergistic effects. The addition of the acylphosphines to CQ resulted in an increase of the polymerization rate compared with CQ alone. On the other hand, a significant decrease of the polymerization quantum yield is observed for the mixtures compared with the pure acylphosphines. Therefore, the increase in the polymerization efficiency of the two rnixtures studied, MAPO/CQ and BAPO/CQ (compared with CQ) can be traced to the larger light absorption range, rather than to the onset of new mechanisms. The presence of the coinitiator ethyl 4-dimethylaminobenzoate, EDB, always present in CQ formulations, has no effect at all on the rates of polymerization photoinitiated by the acylphosphine oxides. From the point of view of photopolymerization quantum yields, an antagonistic effect is observed because Of the energy transfer of the M more efficient initiator (MAPO or BAPO) to the less efficient one (CQ). (C) 2008 Wiley Periodicals, Inc. j Appl Polym Sci 112: 129-134, 2009
Resumo:
Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)(2) as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M (n) = 4000 g mol(-1)) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)(2) in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.
Resumo:
Two series of poly(L,L-lactide-b-ethylene glycol-b-L,L-lactide) copolymers, PLA-PEO-PLA, were synthesized by polymerization Of L,L-lactide using a dihydroxy-terminated poly(ethylene glycol) (PEG) (M-n = 4000 or 600 g/mol) as coinitiator and stannous 2-ethylhexanoate, Sn(Oct)(2), as initiator. The synthesized copolymers have shown high stereoregularity as observed by C-13 NMR analyses. The nanoparticles were prepared by using a solvent diffusion method and the self-assemblage process and were characterized by NMR and SEM. It was possible to conclude that the self-assembled particles presented a core-shell structure characterized by a hydrophobic PLA core and a hydrophilic PEG shell, thus the NMR of the aqueous solutions indicated a quasi-solid behavior for the particles` interior. The diameters of the spherical particles as observed by SEM were in the 50-250 nm range, depending on the copolymer composition and the preparation procedure.
Resumo:
This work presents a mathematical model for the vinyl acetate and n-butyl acrylate emulsion copolymerization process in batch reactors. The model is able to explain the effects of simultaneous changes in emulsifier concentration, initiator concentration, monomer-to-water ratio, and monomer feed composition on monomer conversion, copolymer composition and, to lesser extent, average particle size evolution histories. The main features of the system, such as the increase in the rate of polymerization as temperature, emulsifier, and initiator concentrations increase are correctly represented by the model. The model accounts for the basic features of the process and may be useful for practical applications, despite its simplicity and a reduced number of adjustable parameters.
Resumo:
An experimental investigation of the kinetics of cationic polymerization of beta-pinene was performed using two different initiator systems under two different operating conditions (shot additions of initiator, and continuous feeding of monomer). The experiments were done using calorimetric measurements under isoperibolic conditions. The heat of polymerization of beta-pinene was found to be -30.6 kcal . mol(-1). A simple kinetic model was tentatively proposed, and the model fit reasonably well to the different experimental runs. Different values of the fitting parameters were obtained for runs carried out under different conditions, which can probably be ascribed to the presence of adventitious impurities in the commercial-grade monomer used.
Resumo:
Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.
Resumo:
This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.
Resumo:
The present paper describes the synthesis and characterization by dynamic light scattering, X-ray diffraction, scanning electron microscopy and atomic force microscopy of Laponite RD/Sodium polystyrenesulfonate nanocomposites obtained by radical photopolymerization initiated by the cationic dye safranine. The presence of the clay mineral does not affect the hydrotropic aggregation of the monomers, but allows a better deaggregation of the initiator molecules, decreasing the quenching of the excited states that leads to the radicals that initiate polymerization. Increasing the amount of clay mineral loading in the polymerization mixture promotes higher monomer conversion and faster polymerization. The size of the nanocomposite particles, measured by light scattering decreases from 400 to 80 nm for clay mineral loadings of 1.0 wt.%. The X-ray diffraction patterns indicate that the clay mineral does not present a regular crystalline structure in the nanocomposite. Atomic force microscopy studies show films of sodium polystyrenesulfonate polymer with embedded Laponite platelets in its structure, forming 1-8 nm height and 25-100 nm diameter aggregates. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.