12 resultados para INACTIVATED CATION CHANNELS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.
Resumo:
Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP3-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of scrotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010
Resumo:
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-la Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-la NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Subtle quantum properties offer exciting new prospects in optical communications. For example, quantum entanglement enables the secure exchange of cryptographic keys(1) and the distribution of quantum information by teleportation(2,3). Entangled bright beams of light are increasingly appealing for such tasks, because they enable the use of well-established classical communications techniques(4). However, quantum resources are fragile and are subject to decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of entanglement(5-8), limiting the application of these states to quantum-communication protocols. We investigate the conditions under which this phenomenon takes place for the simplest case of two light beams, and analyse characteristics of states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be harnessed for future applications.
Resumo:
We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.
Resumo:
We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoK(ATP)). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. isolated HTG liver mitochondria presented lower rates of H(2)O(2) production, which were reversed by mitoK(ATP) antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote MitoK(ATP) activation. The mild uncoupling mediated by mitoK(ATP) increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoK(ATP) is a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess, (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration. EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(m)(2)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (+/-0.243) -1.268 (+/-0.125).X(m)(2)r (adj-R(2) = 0.9113, Alkaike information criterion [AIC] = 60.42). Additional two- and three-variable models were also tested and proved less suitable to fit the experimental data. These results indicate that covalent bonding is a good indicator of metal inherent toxicity to bioluminescent fungi. Furthermore, the toxicity of additional metal ions [Ag(I), Cs(I), Sr(II), Ba(II), Fe(II), Hg(II), and Pb(II)] to G. viridilucens was predicted, and Pb was found to be the most toxic metal to this bioluminescent fungus (EC50(F)): Pb(II) > Ag(I) > Hg(I) > Cd(II) > Cu(II) > Co(II) Ni(II) > Mn(II) > Fe(II) approximate to Zn(II) > Mg(II) approximate to Ba(II) approximate to Cs(I) > Li(I) > K(I) approximate to Na(I) approximate to Sr(II)> Ca(II). Environ. Toxicol. Chem. 2010;29:2177-2181. (C) 2010 SETAC
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.