89 resultados para IN-VIVO DIAGNOSIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: GH secretagogues (GHS) produce exaggerated ACTH and cortisol responses in Cushing`s disease (CD) patients, attributable to their direct action on GH-releasing peptide receptor type la (GHSR-1a). However, there are no studies correlating the ill vivo response to GHS and GHSR-1a mRNA expression in ACTH-dependent Cushing`s syndrome (CS) patients. The aim of this study is to correlate the patterns of ACTH and cortisol response to GH-releasing peptide-6 (GHRP-6) to GHSR-1a expression in ACTH-dependent CS patients Design: Prospective study in a tertiary referral hospital center. Fifteen CD patients and two ectopic ACTH syndrome (EAS) patients were studied. Methods: Tumor fragments were submitted to RNA extraction, and GHSR-1a expression was studied through real-time qPCR and compared with normal tissue samples. The patients were also submitted to desmopressin test and vasopressin receptor type 1B (AVPR1B) mRNA analysis by qPCR. Results: GHSR-1a expression was similar in normal pituitary samples and in corticotrophic tumor samples. GHSR-1a expression was higher in patients (CD and EAS) presenting ill vivo response to GHRP-6. Higher expression of AVPR1B was observed in the EAS patients responsive to desmopressin, as well as in corticotrophic tumors, as compared with normal pituitary samples, but no correlation between AVPR1B expression and response to desmopressin was observed in the CD patients. Conclusions: Our results revealed a higher expression of GHSR-1a in the ACTH-dependent CS patients responsive to GHRP-6, suggesting an association between receptor gene expression and ill vivo response to the secretagogue in both the CD and the EAS patients.
Resumo:
Background-Endocardial fibrous tissue (FT) deposition is a hallmark of endomyocardial fibrosis (EMF). Echocardiography is a first-line and the standard technique for the diagnosis of this disease. Although late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) allows FT characterization, its role in the diagnosis and prognosis of EMF has not been investigated. Methods and Results-Thirty-six patients (29 women; age, 54 +/- 12 years) with EMF diagnosis after clinical evaluation and comprehensive 2-dimensional Doppler echocardiography underwent cine-CMR for assessing ventricular volumes, ejection fraction and mass, and LGE-CMR for FT characterization and quantification. Indexed FT volume (FT/body surface area) was calculated after planimetry of the 8 to 12 slices obtained in the short-axis view at end-diastole (mL/m(2)). Surgical resection of FT was performed in 16 patients. In all patients, areas of LGE were confined to the endocardium, frequently as a continuous streak from the inflow tract extending to the apex, where it was usually most prominent. There was a relation between increased FT/body surface area and worse New York Heart Association functional class and with increased probability of surgery (P<0.05). The histopathologic examination of resected FT showed typical features of EMF with extensive endocardial fibrous thickening, proliferation of small vessels, and scarce inflammatory infiltrate. In multivariate analysis, the patients with FT/body surface area >19 mL/m(2) had an increased mortality rate, with a relative risk of 10.8. Conclusions-Our study provides evidence that LGE-CMR is useful in the diagnosis and prognosis of EMF through quantification of the typical pattern of FT deposition. (Circ Cardiovasc Imaging. 2011;4:304-311.)
Resumo:
Few studies have investigated in vivo changes of the cholinergic basal forebrain in Alzheimer`s disease (AD) and amnestic mild cognitive impairment (MCI), an at risk stage of AD. Even less is known about alterations of cortical projecting fiber tracts associated with basal forebrain atrophy. In this study, we determined regional atrophy within the basal forebrain in 21 patients with AD and 16 subjects with MCI compared to 20 healthy elderly subjects using deformation-based morphometry of MRI scans. We assessed effects of basal forebrain atrophy on fiber tracts derived from high-resolution diffusion tensor imaging (DTI) using tract-based spatial statistics. We localized significant effects relative to a map of cholinergic nuclei in MRI standard space as determined from a postmortem brain. Patients with AD and MCI subjects showed reduced volumes in basal forebrain areas corresponding to anterior medial and lateral, intermediate and posterior nuclei of the Nucleus basalis of Meynert (NbM) as well as in the diagonal band of Broca nuclei (P < 0.01). Effects in MCI subjects were spatially more restricted than in AD, but occurred at similar locations. The volume of the right antero-lateral NbM nucleus was correlated with intracortical projecting fiber tract integrity such as the corpus callosum, cingulate, and the superior longitudinal, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculus (P < 0.05, corrected for multiple comparisons). Our findings suggest that a multimodal MRI-DTI approach is supportive to determine atrophy of cholinergic nuclei and its effect on intracortical projecting fiber tracts in AD. Hum Brain Mapp 32: 1349-1362, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The aim of this investigation was to monitor metronidazole concentrations in the gingival crevicular fluid (GCF) collected from periodontal pockets of dogs after treatment with an experimental 15% metronidazole gel. Five dogs had periodontitis induced by cotton ligatures placed subgingivally and maintained for a 30-day period. After the induction period, only pockets with 4 mm or deeper received the gel. Each pocket was filled up to the gingival margin by means of a syringe with a blunt-end needle. GCF was collected in paper strips and quantified in an electronic device before and after 15 minutes, 1 h, 6 h, 24 h and 48 h of gel administration. The GCF samples were assayed for metronidazole content by means of a high performance liquid chromatography method. Concentrations of metronidazole in the GCF of the 5 dogs (mean ± SD, in µg/mL) were 0 ± 0 before gel application and 47,185.75 ± 24,874.35 after 15 minutes, 26,457.34 ± 25,516.91 after 1 h, 24.18 ± 23.11 after 6 h, 3.78 ± 3.45 after 24 h and 3.34 ± 5.54 after 48 h. A single administration of the 15% metronidazole gel released the drug in the GCF of dogs in levels several-fold higher than the minimum inhibitory concentration for some periodontopathogens grown in subgingival biofilms for up to one hour, but metronidazole could be detected in the GCF at least 48 hours after the gel application.
Resumo:
Tamarindus indica has been used in folk medicine as an antidiabetic, a digestive aid, and a carminative, among other uses. Currently, there is no information in the toxicology literature concerning the safety of T. indica extract. We evaluated the clastogenic and/or genotoxic potential of fruit pulp extract of this plant in vivo in peripheral blood and liver cells of Wistar rats, using the comet assay, and in bone marrow cells of Swiss mice, using the micronucleus test. The extract was administered by gavage at doses of 1000, 1500 and 2000 mg/kg body weight. Peripheral blood and liver cells from Wistar rats were collected 24 h after treatment, for the comet assay. The micronucleus test was carried out in bone marrow cells from Swiss mice collected 24 h after treatment. The extract made with T. indica was devoid of clastogenic and genotoxic activities in the cells of the rodents, when administered orally at these three acute doses.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
Resumo:
Background: Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. Methodology/Principal Findings: In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. Conclusions/Significance: Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.
Resumo:
Objective: This study investigated and correlated the kinetic expression of vascular endothelial growth factor (VEGF)-A(165) messenger ribonucleic acid (mRNA) with the associated use or not of an infrared laser and a visible red laser during the wound healing in rats. Background Data: There is a lack of scientific evidence demonstrating the influence of low-level laser therapy (LLLT) on the expression of VEGF mRNA in vivo. Materials and Methods: Forty-five Wistar rats were randomly allocated to one of three groups: I (n = 5, nonoperated animals), II (n = 25, operated animals), and III (n = 25, animals operated and subjected to laser irradiation). A surgical wound was performed using a scalpel in the right side of the tongue of operated animals. In group III, two sessions of laser irradiation were performed, one right after the surgical procedure (infrared laser, 780 nm, 70mW, 35 J/cm(2)) and the other 48 h later (visible red laser, 660 nm, 40mW, 5J/cm(2)). Five animals each were sacrificed 1, 3, 5, and 7 days postoperatively in groups II and III, and samples of tongue tissue were obtained. The animals of group I were sacrificed on day 7. Total RNA was extracted using guanidine-isothiocyanate-phenol-chloroform method. The results of horizontal electrophoresis after reverse transcription polymerase chain reaction permitted the ratio of VEGF-A(165) mRNA and glyceraldehyde 3-phosphate dehydrogenase mRNA expression for groups I, II, and III to be assessed (two-way analysis of variance and Tukey test, p<0.05). Results: The expression of VEGF-A(165) mRNA in group II (0.770 +/- 0.098) was statistically greater than that observed in groups I (0.523 +/- 0.164) and III (0.504 +/- 0.069) in the first day after surgery (p<0.05). Significant differences between the groups were not observed in other time periods. Conclusion: LLLT influenced the expression of VEGF-A(165) mRNA during wound healing after a surgical procedure on the tongue of Wistar rats.
Resumo:
Cloning by nuclear transfer is often associated with poor results due to abnormal nuclear reprogramming of somatic donor cells and altered gene expression patterns. We investigated the expression patterns of imprinted genes IGF2 and IGF2R in 33- to 36-day bovine embryos and chorio-allantoic membranes derived from in vivo- and in vitro-produced embryos by somatic cell nuclear transfer (SCNT), parthenogenetic activation, and in vitro fertilization (IVF). There was a lower IGF2 expression rate in the SCNT (0.19) and parthenogenetic (0.02) groups when compared to in vivo and IVF embryos (2.01; P < 0.05). In the chorio-allantoic membranes, IGF2 showed a baseline expression pattern (P < 0.05) in parthenotes (0.001) when compared to in vivo, IVF (3.13), and SCNT (0.98) groups. IGF2R was less expressed (P < 0.05) in SCNT chorio-allantoic membranes (0.25) when compared to the in vivo group. The low expression of IGF2 in parthenogenetic embryos and chorio-allantoic membranes confirms its imprinted status in cattle. Alterations in the relative frequency of IGF2 and IGF2R transcripts were observed in SCNT-derived bovine embryos and chorioallantoic membranes, respectively, supporting the hypothesis that abnormalities in the expression of imprinted genes are causes of the low efficiency of SCNT procedures in this species.
Resumo:
Background: It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods: We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm(2), irradiance 2.5 W/cm(2) and irradiation times of 60s (dose 150 J/cm(2)) and 420s (dose 1050 J/cm(2)) respectively. Results: There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 +/- 1.40% and 4.26 +/- 0.60%) at 72 h postirradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm(2) dose group were not significantly different from controls. For the 1050 J/cm(2) dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion: LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm(2)) and high dose (1050 J/cm(2)) significantly increases melanoma tumor growth in vivo.
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chomatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein pro. le of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 mu g L(-1) Se) compared to other diets (2-5 mu g L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.
Resumo:
The Kallikrein-Kinin System (KKS) has been associated to inflammatory and immunogenic responses in the peripheral and central nervous system by the activation of two receptors, namely B1 receptor and B2 receptor. The B1 receptor is absent or under-expressed in physiological conditions, being up-regulated during tissue injury or in the presence of cytokines. The B2 receptor is constitutive and mediates most of the biological effects of kinins. Some authors suggest a link between the KKS and the neuroinflammation in Alzheimer`s disease (AD). We have recently described an increase in bradykinin (BK) in the cerebrospinal fluid and in densities of B1 and B2 receptors in brain areas related to memory, after chronic infusion of amyloid-beta (A beta) peptide in rats, which was accompanied by memory disruption and neuronal loss. Mice lacking B1 or B2 receptors presented reduced cognitive deficits related to the learning process, after acute intracerebroventricular (i.c.v). administration of A. Nevertheless, our group showed an early disruption of cognitive function by i.c.v. chronic infusion of A beta after a learned task, in the knock-out B2 mice. This suggests a neuroprotective role for B2 receptors. In knock-out B1 mice the memory disruption was absent, implying the participation of this receptor in neurodegenerative processes. The acute or chronic infusion of A beta can lead to different responses of the brain tissue. In this way, the proper involvement of KKS on neuroinflammation in AD probably depends on the amount of A beta injected. Though, BK applied to neurons can exert inflammatory effects, whereas in glial cells, BK can have a potential protective role for neurons, by inhibiting proinflammatory cytokines. This review discusses this duality concerning the KKS and neuroinflammation in AD in vivo.
Resumo:
This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms. Muscle Nerve 42: 778-787,2010