8 resultados para Hypertension
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We evaluated the development of arterial hypertension, cardiac function, and collagen deposition, as well as the level of components of the renin-angiotensin system in the heart of transgenic rats that overexpress an angiotensin (Ang)-(1-7)-producing fusion protein, TGR(A1-7)3292 (TG), which induces a lifetime increase in circulating levels of this peptide. After 30 days of the induction of the deoxycorticosterone acetate (DOCA)-salt hypertension model, DOCA-TG rats were hypertensive but presented a lower systolic arterial pressure in comparison with DOCA-Sprague-Dawley (SD) rats. In contrast to DOCA-SD rats that presented left ventricle (LV) hypertrophy and diastolic dysfunction, DOCA-TG rats did not develop cardiac hypertrophy or changes in ventricular function. In addition, DOCA-TG rats showed attenuation in mRNA expression for collagen type I and III compared with the increased levels of DOCA-SD rats. Ang II plasma and LV levels were reduced in SD and TG hypertensive rats in comparison with normotensive animals. DOCA-TG rats presented a reduction in plasma Ang-(1-7) levels; however, there was a great increase in Ang-(1-7) (approximate to 3-fold) accompanied by a decrease in mRNA expression of both angiotensin-converting enzyme and angiotensin-converting enzyme 2 in the LV. The mRNA expression of Mas and Ang II type 1 receptors in the LV was not significantly changed in DOCA-SD or DOCA-TG rats. This study showed that TG rats with increased circulating levels of Ang-(1-7) are protected against cardiac dysfunction and fibrosis and also present an attenuated increase in blood pressure after DOCA-salt hypertension. In addition, DOCA-TG rats showed an important local increase in Ang-(1-7) levels in the LV, which might have contributed to the attenuation of cardiac dysfunction and prefibrotic lesions. (Hypertension. 2010;55:889-896.)
Resumo:
P>1. Clinical and experimental evidence highlights the importance of the renin-angiotensin system in renovascular hypertension. Furthermore, genetic factors affecting angiotensin-converting enzyme (ACE) could influence the development of renovascular hypertension. 2. To test the effect of small gene perturbations on the development of renovascular hypertension, mice harbouring two or three copies of the Ace gene were submitted to 4 weeks of two-kidney, one-clip (2K1C) hypertension. Blood pressure (BP), cardiac hypertrophy, baroreflex sensitivity and blood pressure and heart rate variability were assessed and compared between the different groups. 3. The increase in BP induced by 2K1C was higher in mice with three copies of the Ace gene compared with mice with only two copies (46 vs 23 mmHg, respectively). Moreover, there was a 3.8-fold increase in the slope of the left ventricle mass/BP relationship in mice with three copies of the Ace gene. Micewith three copies of the Ace gene exhibited greater increases in cardiac and serum ACE activity than mice with only two copies of the gene. Both baroreflex bradycardia and tachycardia were significantly depressed in mice with three copies of the Ace gene after induction of 2K1C hypertension. The variance in basal systolic BP was greater in mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two copies of the gene (106 vs 54%, respectively). In addition, the low-frequency component of the pulse interval was higher mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two (168 vs 86%, respectively). Finally, in mice with three copies of the Ace gene, renovascular hypertension induced a 6.1-fold increase in the sympathovagal balance compared with a 3.2-fold increase in mice with only two copies of the gene. 4. Collectively, these data provide direct evidence that small genetic disturbances in ACE levels per se have an influence on haemodynamic, cardiac mass and autonomic nervous system responses in mice under pathological perturbation.
Resumo:
Extracellular signal-regulated kinase (ERK) 1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191 +/- 3 mm Hg) compared with female DOCA rats (172 +/- 7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22 +/- 3 mN; n=6) and small mesenteric arteries (13 +/- 2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16 +/- 3 and 10 +/- 2 mN, respectively; P<0.05) and female DOCA rats (15 +/- 1 and 11 +/- 1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 mu mol/L) abrogated increased contraction to phenylephrine in aorta (14 +/- 2 mN) and small mesenteric arteries (10 +/- 2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process. (Hypertension. 2010; 55: 172-179.)
Resumo:
Aims: The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. Main methods: For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. Key findings: In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition. and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Significance: Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (E(max) [mN] = 17.6 +/- 4 versus 10.7 +/- 2 control; n = 6) and decreased relaxation to acetylcholine (47.6 +/- 6% versus 73.2 +/- 10% control; n = 8) versus arteries from uninephrectomized rats. O- GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units = 3.8 +/- 0.3 versus 2.3 +/- 0.3 control; n = 5). PugNAc (O- GlcNAcase inhibitor; 100 mu mol/L; 24 hours) increased vascular O- GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2 +/- 2 versus 10.7 +/- 3 vehicle; n = 6), and decreased acetylcholine dilation in uninephrectomized (41.4 +/- 6 versus 73.2 +/- 3 vehicle; n = 6) but not in DOCA rats (phenylephrine, 16.5 +/- 3 versus 18.6 +/- 3 vehicle, n = 6; acetylcholine, 44.7 +/- 8 versus 47.6 +/- 7 vehicle, n = 6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) phosphorylation (P < 0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) (P < 0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc-modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O- GlcNAc transferase, glutamine: fructose-6-phosphate amidotransferase, and O- GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P < 0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O- GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension. (Hypertension. 2009; 53: 166-174.)
Resumo:
Oxytocinergic brainstem projections participate in the autonomic control of the circulation. We investigated the effects of hypertension and training on cardiovascular parameters after oxytocin (OT) receptor blockade within the nucleus tractus solitarii (NTS) and NTS OT and OT receptor expression. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were trained (55% of maximal exercise capacity) or kept sedentary for 3 months and chronically instrumented (NTS and arterial cannulae). Mean arterial blood pressure (MAP) and heart rate (HR) were measured at rest and during an acute bout of exercise after NTS pretreatment with vehicle or OT antagonist (20 pmol of OT antagonist (200 nl of vehicle)-1). Oxytocin and OT receptor were quantified (35S-oligonucleotide probes, in situ hybridization) in other groups of rats. The SHR exhibited high MAP and HR (P < 0.05). Exercise training improved treadmill performance and reduced basal HR (on average -11%) in both groups, but did not change basal MAP. Blockade of NTS OT receptor increased exercise tachycardia only in trained groups, with a larger effect on trained WKY rats (+31 +/- 9 versus +12 +/- 3 beats min-1 in the trained SHR). Hypertension specifically reduced NTS OT receptor mRNA density (-46% versus sedentary WKY rats, P < 0.05); training did not change OT receptor density, but significantly increased OT mRNA expression (+2.5-fold in trained WKY rats and +15% in trained SHR). Concurrent hypertension- and training-induced plastic (peptide/receptor changes) and functional adjustments (HR changes) of oxytocinergic control support both the elevated basal HR in the SHR group and the slowing of the heart rate (rest and exercise) observed in trained WKY rats and SHR.
Resumo:
In the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study ( n = 6632), eplerenone- associated reduction in all- cause mortality was significantly greater in those with a history of hypertension ( Hx- HTN). There were 4007 patients with Hx- HTN ( eplerenone: n = 1983) and 2625 patients without Hx- HTN ( eplerenone: n = 1336). Propensity scores for eplerenone use, separately calculated for patients with and without Hx- HTN, were used to assemble matched cohorts of 1838 and 1176 pairs of patients. In patients with Hx- HTN, all- cause mortality occurred in 18% of patients treated with placebo ( rate, 1430/ 10 000 person- years) and 14% of patients treated with eplerenone ( rate, 1058/ 10 000 person- years) during 2350 and 2457 years of follow- up, respectively ( hazard ratio [ HR]: 0.71; 95% CI: 0.59 to 0.85; P < 0.0001). Composite end point of cardiovascular hospitalization or cardiovascular mortality occurred in 33% of placebo-treated patients ( 3029/ 10 000 person- years) and 28% of eplerenone- treated patients (2438/10 000 person- years) with Hx- HTN ( HR: 0.82; 95% CI: 0.72 to 0.94; P = 0.003). In patients without Hx- HTN, eplerenone reduced heart failure hospitalization ( HR: 73; 95% CI: 0.55 to 0.97; P = 0.028) but had no effect on mortality ( HR: 0.91; 95% CI: 0.72 to 1.15; P = 0.435) or on the composite end point ( HR: 0.91; 95% CI: 0.76 to 1.10; P = 0.331). Eplerenone should, therefore, be prescribed to all of the post - acute myocardial infarction patients with reduced left ventricular ejection fraction and heart failure regardless of Hx- HTN.
Resumo:
A biomimetic sensor is proposed as a promising new analytical method for determination of captopril in different classes of samples. The sensor was prepared by modifying a carbon paste electrode with iron (II) phthalocyanine bis(pyridine) [FePe(dipy)] complex. Amperometric measurements in a batch analytical mode were first carried out in order to optimize the sensor response. An applied potential lower than 0.2 V vs Ag vertical bar AgCl in 0.1 mol L(-1) of TRIS buffer at pH 8.0 provided the best response, with a linear range of 2.5 x 10(-5) to 1.7 x 10(-4) mol L(-1). A detailed investigation of the selectivity of the sensor, employing seventeen other drugs, was also performed. Recovery studies were carried out using biological and environment samples in order to evaluate the sensor`s potential for use with these sample classes. Finally, the performance of the biomimetic sensor was optimized in a flow injection (FIA) system using a wall jet electrochemical cell. Under optimized flow conditions, a broad linear response range, from 5.0 x 10(-4) to 2.5 x 10(-2) mol L(-1), was obtained for captopril, with a sensitivity of 210 +/- 1 mu A L mol(-1).