24 resultados para Hydrologic cycle.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.
Resumo:
We investigated the seasonal patterns of water vapor and sensible heat flux along a tropical biome gradient from forest to savanna. We analyzed data from a network of flux towers in Brazil that were operated within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). These tower sites included tropical humid and semideciduous forest, transitional forest, floodplain (with physiognomies of cerrado), and cerrado sensu stricto. The mean annual sensible heat flux at all sites ranged from 20 to 38 Wm(-2), and was generally reduced in the wet season and increased in the late dry season, coincident with seasonal variations of net radiation and soil moisture. The sites were easily divisible into two functional groups based on the seasonality of evaporation: tropical forest and savanna. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months (Manaus, Santarem and Rondonia), evaporation rates increased in the dry season, coincident with increased radiation. Evaporation rates were as high as 4.0 mm d(-1) in these evergreen or semidecidous forests. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season (Mato Grosso, Tocantins and Sao Paulo) showed clear evidence of reduced evaporation in the dry season. Evaporation rates were as low as 2.5 mm d(-1) in the transitional forests and 1 mm d(-1) in the cerrado. The controls on evapotranspiration seasonality changed along the biome gradient, with evaporative demand (especially net radiation) playing a more important role in the wetter forests, and soil moisture playing a more important role in the drier savannah sites.
Resumo:
The survival, absolute population size, gonotrophic cycle duration, and temporal and spatial abundance of Nyssomyia neivai (Pinto) were studied in a rural area endemic for American cutaneous leishmaniasis (ACL) in Conchal, Sao Paulo State, southeastern Brazil, using mark-release-recapture techniques and by monitoring population fluctuation. The monthly abundance exhibited a unimodal pattern, with forest and domicile habitats having the highest relative abundances. A total of 1,873 males and 3,557 females were marked and released during the six experiments, of which 4.1-13.0% of males and 4.1-11.8% of females were recaptured. Daily survivorship estimated from the decline in recaptures per day was 0.681 for males and 0.667 for females. Gonotrophic cycle duration was estimated to be 4.0 d. Absolute population size was calculated using the Lincoln Index and ranged from 861 to 4,612 males and from 2,187 to 19,739 females. The low proportion of females that reach the age when they are potentially infective suggests that N. neivai has a low biological capacity to serve as a vector and that factors such as high biting rates and opportunistic feeding behavior would be needed to enable Leishmania (Viannia) braziliensis Vianna transmission. This agreed with the epidemiological pattern of ACL in southeastern Brazil that is characterized by low incidence, with isolated cases acquired principally within domiciliary habitats.
Resumo:
The objective of this work is to report the antiproliferative effect of P. cupana treatment in Ehrlich Ascites Carcinoma (EAC)-bearing animals. Female mice were treated with three doses of powdered P. cupana (100, 1000 and 2000 mg/kg) for 7 days, injected with 10(5) EAC cells and treated up to day 21. In addition, a survival experiment was carried out with the same protocol. P. cupana decreased the ascites volume (p = 0.0120), cell number (p = 0.0004) and hemorrhage (p = 0.0054). This occurred through a G1-phase arrest (p < 0.01) induced by a decreased gene expression of Cyclin D1 in EAC cells. Furthermore, P. cupana significantly increased the survival of EAC-bearing animals (p = 0.0012). In conclusion, the P. cupana growth control effect in this model was correlated with a decreased expression of cyclin D1 and a G1 phase arrest. These results reinforce the cancer therapeutic potential of this Brazilian plant. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work, a new theoretical mechanism is presented in which equatorial Rossby and inertio-gravity wave modes may interact with each other through resonance with the diurnal cycle of tropical deep convection. We have adopted the two-layer incompressible equatorial primitive equations forced by a parametric heating that roughly represents deep convection activity in the tropical atmosphere. The heat source was parametrized in the simplest way according to the hypothesis that it is proportional to the lower-troposphere moisture convergence, with the background moisture state function mimicking the structure of the ITCZ. In this context, we have investigated the possibility of resonant interaction between equatorially trapped Rossby and inertio-gravity modes through the diurnal cycle of the background moisture state function. The reduced dynamics of a single resonant duo shows that when this diurnal variation is considered, a Rossby wave mode can undergo significant amplitude modulations when interacting with an inertio-gravity wave mode, which is not possible in the context of the resonant triad non-linear interaction. Therefore, the results suggest that the diurnal variation of the ITCZ can be a possible dynamical mechanism that leads the Rossby waves to be significantly affected by high frequency modes.
Resumo:
In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system`s life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil`s south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.
Resumo:
The South American (SA) rainy season is studied in this paper through the application of a multivariate Empirical Orthogonal Function (EOF) analysis to a SA gridded precipitation analysis and to the components of Lorenz Energy Cycle (LEC) derived from the National Centers for Environmental Prediction (NCEP) reanalysis. The EOF analysis leads to the identification of patterns of the rainy season and the associated mechanisms in terms of their energetics. The first combined EOF represents the northwest-southeast dipole of the precipitation between South and Central America, the South American Monsoon System (SAMS). The second combined EOF represents a synoptic pattern associated with the SACZ (South Atlantic convergence zone) and the third EOF is in spatial quadrature to the second EOF. The phase relationship of the EOFs, as computed from the principal components (PCs), suggests a nonlinear transition from the SACZ to the fully developed SAMS mode by November and between both components describing the SACZ by September-October (the rainy season onset). According to the LEC, the first mode is dominated by the eddy generation term at its maximum, the second by both baroclinic and eddy generation terms and the third by barotropic instability previous to the connection to the second mode by September-October. The predominance of the different LEC components at each phase of the SAMS can be used as an indicator of the onset of the rainy season in terms of physical processes, while the existence of the outstanding spectral peaks in the time dependence of the EOFs at the intraseasonal time scale could be used for monitoring purposes. Copyright (C) 2009 Royal Meteorological Society
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO(2) concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana: a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Resumo:
The study of the strobilation process, a feature unique in the class Scyphozoa, is an issue that helps understanding the patterns of asexual reproduction in sessile invertebrates. Many inducers of asexual reproduction are known for scyphozoans. However, the influence of food resources on the strobilation of Coronate Scyphozoa has never been tested. WO observed strobilation of a large number of polyps of Nausithoe aurea, from a wide sampling area along the South Atlantic coast of Brazil, through the administration of controlled number of hatched nauplii of Artemia franciscana under a previous tested starvation and feeding protocol. The number of strobilations between and within groups varied and the fate and shape of strobilation deviated from the biology reported in the original description. Artificial seawater was used to reduce the influence of dissolved organic matter as likely important alternative nourishment.
Resumo:
The reproductive cycle of Ophionereis reticulata, a common sediment-rocky shore-interface ophiuroid, was examined monthly from January 2002 to January 2003 at Praia Grande beach (Sao Sesbatiao, state of Sao Paulo, Brazil). Mature individuals were found from January 2002 to April 2002 and from November 2002 to January 2003. Spawning was regcorded from January 2002 to March 2002 and from November 2002 to January 2003. Mature sperm is still present in April which could be involved in the fertilization of the last oocytes spawned in March and April. November and December marked the final point in the maturation process, with a high concentration of yolk and lipid nutrients in the oocytes. Ophionereis reticulata showed, for the period analyzed, a single spawning period, during spring and summer.
Resumo:
P>A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.
Resumo:
The role of PPAR-gamma in ciglitazone and 15-d PGJ(2)-induced apoptosis and cell cycle arrest of Jurkat (before and after PPAR gamma gene silencing), U937 (express high levels of PPAR gamma) and HeLa (that express very low levels of PPAR gamma) cells was investigated. PPAR gamma gene silencing, per se, induced a G2/M cell arrest, loss of membrane integrity and DNA fragmentation of Jurkat cells, indicating that PPAR gamma is important for this cell survival and proliferation. Ciglitazone-induced apoptosis was abolished after knockdown of PPAR gamma suggesting a PPAR gamma-dependent pro-apoptotic effect. However, ciglitazone treatment was toxic for U937 and HeLa cells regardless of the presence of PPAR gamma. This treatment did not change the cell cycle distribution corroborating with a PPAR gamma-independent mechanism. On the other hand, 15-d PGJ(2) induced apoptosis of the three cancer cell lines regardless of the expression of PPAR gamma. These results suggest that PPAR gamma plays an important role for death of malignant T lymphocytes (Jurkat cells) and PPAR gamma agonists exert their effects through PPAR gamma-dependent and -independent mechanisms depending on the drug and the cell type. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The relationship between sleep and epilepsy is both complex and clinically significant. Temporal lobe epilepsy (TLE) influences sleep architecture, while sleep plays an important role in facilitating and/or inhibiting possible epileptic seizures. The pilocarpine experimental model reproduces several features of human temporal lobe epilepsy and is one of the most widely used models in basic research. The aim of the present study was to characterize, behaviorally and electrophysiologically, the phases of sleep-wake cycles (SWC) in male rats with pilocarpine-induced epilepsy. Epileptic rats presented spikes in all phases of the SWC as well as atypical cortical synchronization during attentive wakefulness and paradoxical sleep. The architecture of the sleep-wake phases was altered in epileptic rats, as was the integrity of the SWC. Because our findings reproduce many relevant features observed in patients with epilepsy, this model is suitable to study sleep dysfunction in epilepsy. (C) 2009 Elsevier Inc. All rights reserved.