4 resultados para Hydrogen molecule

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure N,N`-di(methoxycarbonylsulfenyl)urea, [CH(3)OC(O)SNH](2)CO, is quantitatively prepared by the hydrolysis reaction of CH(3)OC(O)SNCO and characterized by (1)H NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach with data obtained from X-ray diffraction, vibrational spectra and theoretical calculation methods. The IR and Raman spectra for normal and deuterated species are reported. The crystal structure of [CH(3)OC(O)SNH](2)CO was determined by X-ray diffraction methods. The substance crystallizes in the orthorhombic P2(1)2(1)2 space group with a = 9.524(2), b = 12.003(1), c = 4.481 (1) angstrom, and Z = 2 moieties in the unit cell. The molecule is sited on a twofold crystallographic axis (C(2)) parallel to c and shows the anti-anti conformation (S-N single bonds antiperiplanar with respect to the opposite C-N single bonds in sulfenyl-urea-sic group). Neighboring molecules are arranged in a chain motif that extends along the C(2)-axis and is held by bifurcated NH center dot center dot center dot O center dot center dot center dot HN intermolecular bonds. A local planar symmetry is observed in the crystal for the central -SN(H)C(O)N(H)S- skeleton. Experimental and calculated data allow to trace this structural feature to the occurrence of N-H center dot center dot center dot O=C hydrogen bonding interactions. Calculated vibrational and structural properties are in good agreement with the experimentally determined features. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from infrared photodissociation (IRPD) spectroscopy and kinetics of singly hydrated, protonated proline indicate that the water molecule hydrogen bonds preferentially to the formally neutral carboxylic acid at low temperatures and at higher temperatures to the protonated N-terminus, which bears the formal charge. Hydration isomer populations obtained from IRPD kinetic data as a function of temperature are used to generate a van`t Hoff plot that reveals that C-terminal binding is enthalpically favored by 4.2-6.4 kJ/mol, whereas N-terminal binding is entropically favored by 31-43 J/(mol K), consistent with a higher calculated barrier for water molecule rotation at the C-terminus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relativistic four-component study was performed for the XeF(2) molecule by using the Dirac-Coulomb (DC) Hamiltonian and the relativistic adapted Gaussian basis sets (RAGBSs). The comparison of bond lengths obtained showed that relativistic effects on this property are small (increase of only 0.01 angstrom) while the contribution of electron correlation, obtained at CCSD(T) or CCSD-T levels, is more important (increase of 0.05 angstrom). Electron correlation is also dominant over relativistic effects for dissociation energies. Moreover, the correlation-relativity interaction is shown to be negligible for these properties. The electron affinity, the first ionization potential and the double ionization potential are obtained by means of the Fock-space coupled cluster (FSCC) method, resulting in DC-CCSD-T values of 0.3 eV, 12.5 eV and 32.3 eV, respectively. Vibrational frequencies and some anharmonicity constants were also calculated under the four-component formalism by means of standard perturbation equations. All these molecular properties are, in general, ill satisfactory agreement with available experimental results. Finally, a partition in terms of charge-charge flux-dipole flux (CCFDF) contributions derived by means of the quantum theory of atoms in molecules (QTAIM) in non-relativistic QCISD(FC)/3-21G* calculations was carried out for XeF(2) and KrF(2). This analysis showed that the most remarkable difference between both molecules lies on the charge flux contribution to the asymmetric stretching mode, which is negligible in KrF(2) but important in XeF(2). (c) 2008 Elsevier B.V. All rights reserved.