6 resultados para Humic Substances
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.
Resumo:
BACKGROUND: Chloroform, ethyl acetate and methanol extracts of a sample of red propolis from the state of Alagoas (northeast Brazil) were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Antimicrobial and antioxidant activities were also obtained. RESULTS: The propolis sample contained low content of narigenin-8-C-hexoside, this being the first report of a C-glycoside in propolis. The main constituent found was characterized as 3,4,2`,3`-tetrahydroxychalcone. Other important constituents were the chalcone isoliquiritigenin, the isoflavans (3S)-vestitol, (3S)-7-O-methylvestitol, the pterocarpan medicarpin, the phenylpropenes trans-anethol, methyl eugenol, elimicin, methoxyeugenol and cis-asarone, and the triterpenic alcohols lupeol and alpha- and beta- amyrins. The methanol extract exhibited high antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl and beta-carotene/linoleic acid assay methods, and antimicrobial activity toward Gram-positive and Gram-negative bacteria. CONCLUSION: Structures are suggested for new substances never before seen in any kind of propolis. This is the first report of 3,4,2`,3`-tetrahydroxychalcone and a flavone C-glycoside in a propolis sample. (C) 2011 Society of Chemical Industry
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Chemical and spectroscopic methods were used to characterize organic matter transformations during the composting process. Four different residue mixtures were studied: P1 - garden trimmings (GT) only, P2 - GT plus fresh cattle manure, P3 - GT plus orange pomace and P4 - GT plus filter cake. The thermophilic phase was not reached in PI compost, but the P2, P3 and P4 composts showed all three typical process phases. The thermophilic phase and CEC/C ratio stabilized after 90 days, while C/N ratio and the ash content stabilized after 60 days. The increasing E(4)/E(6) ratio indicated oxidation reactions occurring during the process in the material from P2, P3 and P4. The (13)C NMR and FTIR results suggested extraction of both pectin and lignin in the HA-like fraction. The CEC/C ratio, temperature and E(4)/E(6) ratio showed that within 90 days P2, P3 and P4 composts were humified. However, material from P1 did not show characteristics of humified compost. From these data, it is apparent that C/N ratio and ash content are not reliable methods for monitoring the composting process. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.