3 resultados para Human-computer interaction.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A large majority of the 1000-1500 proteins in the mitochondria are encoded by the nuclear genome, and therefore, they are translated in the cytosol in the form and contain signals to enable the import of proteins into the organelle. The TOM complex is the major translocase of the outer membrane responsible for preprotein translocation. It consists of a general import pore complex and two membrane import receptors, Tom20 and Tom70. Tom70 contains a characteristic TPR domain, which is a docking site for the Hsp70 and Hsp90 chaperones. These chaperones are involved in protecting cytosolic preproteins from aggregation and then in delivering them to the TOM complex. Although highly significant, many aspects of the interaction between Tom70 and Hsp90 are still uncertain. Thus, we used biophysical tools to study the interaction between the C-terminal domain of Hsp90 (C-Hsp90), which contains the EEVD motif that binds to TPR domains, and the cytosolic fragment of Tom70. The results indicate a stoichiometry of binding of one monomer of Tom70 per dimer of C-Hsp90 with a K(D) of 360 30 nM, and the stoichiometry and thermodynamic parameters obtained suggested that Tom70 presents a different mechanism of interaction with Hsp90 when compared with other TPR proteins investigated. (C) 2011 Elsevier Inc. All rights reserved.