2 resultados para Human Element

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM10) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM2.5), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM10 emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 157-kb conjugative plasmid pEO5 encoding alpha-haemolysin in strains of human enteropathogenic Escherichia coli (EPEC) O26 was investigated for its relationship with EHEC-haemolysin-encoding plasmids of enterohaemorrhagic E. coli (EHEC) O26 and O157 strains. Plasmid pEO5 was found to be compatible with EHEC-virulence plasmids and did not hybridize in Southern blots with plasmid pO157 from the EHEC O157:H7 strain EDL933, indicating that both plasmids were unrelated. A 9227-bp stretch of pEO5 DNA encompassing the entire alpha-hlyCABD operon was sequenced and compared for similarity to plasmid and chromosomally inherited alpha-hly determinants. The alpha-hly determinant of pEO5 (7252 bp) and its upstream region was most similar to corresponding sequences of the murine E. coli alpha-hly plasmid pHly152, in particular, the structural alpha-hlyCABD genes (99.2% identity) and the regulatory hlyR regions (98.8% identity). pEO5 and alpha-hly plasmids of EPEC O26 strains from humans and cattle were very similar for the regions encompassing the structural alpha-hlyCABD genes. The major difference found between the hly regions of pHly152 and pEO5 is caused by the insertion of an IS2 element upstream of the hlyC gene in pHly152. The presence of transposon-like structures at both ends of the alpha-hly sequence indicates that this pEO5 virulence factor was probably acquired by horizontal gene transfer.