2 resultados para Hot water

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, Chlorella vulgaris (CV) was examined for its chelating effects on the ability of bone marrow stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice, using the long-term bone marrow culture (LTBMC). In addition, the levels of interleukin (IL)-6, an important hematopoietic stimulator, as well as the numbers of adherent and non-adherent cells were also investigated. Mice were gavage treated daily with a single 50 mg/kg dose of CV for 10 days, concomitant to continuous offering of 1300 ppm lead acetate in drinking water. We found that CV up-modulates the reduced ability of stromal cell layer to display myeloid progenitor cells in vitro in lead-exposed mice and restores both the reduced number of non-adherent cells and the ability of stromal cells from these mice to produce IL-6. Monitoring of lead poisoning demonstrated that CV treatment significantly reduced lead levels in blood and tissues, completely restored the normal hepatic ALA levels, decreased the abnormally high plasma ALA and partly recovered the liver capacity to produce porphyrins. These findings provide evidence for a beneficial use of CV for combination or alternative chelating therapy to protect the host from the damage induced by lead poisoning. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber-matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.