3 resultados para Hornos solares

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

After the development of the highly sensitive material Al(2)O(3):C, personal dosimetry using optically stimulated luminescence (OSL) has been continuously adopted in place of thermoluminescence dosimeters (TLD) by different countries (e.g. USA and Japan). In order to use a dosimetric system in Brazil it is necessary to develop a protocol and to fulfill performance and type tests in accordance with the accreditation program approved by the responsible governmental committee. This paper presents a proposal for an accreditation program for OSL personal dosimetry using a commercial dosimetric system, including tests that follow the same rules as applied to TLD and film dosimetry. The experimental results are within the reliability interval and in accordance to the expected behavior. A new test concerning re-analysis of exposed badges is also proposed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.