14 resultados para Homoclinic Intersection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.
Resumo:
Let f : U subset of R(2) -> R(3) be a representative of a finitely determined map germ f : (R(2), 0) -> (R(3), 0). Consider the curve obtained as the intersection of the image of the mapping f with a sufficiently small sphere s(epsilon)(2) centered at the origin in R(3), call this curve the associated doodle of the map germ f. For a large class of map germs the associated doodle has many transversal self-intersections. The topological classification of such map germs is considered from the point of view of the associated doodles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
Resumo:
We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.
Resumo:
We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.
Resumo:
In this paper we study the spectrum of integral group rings of finitely generated abelian groups G from the scheme-theoretic viewpoint. We prove that the (closed) singular points of Spec Z[G], the (closed) intersection points of the irreducible components of Spec Z[G] and the (closed) points over the prime divisors of vertical bar t(G)vertical bar coincide. We also determine the formal completion of Spec Z[G] at a singular point.
Resumo:
Let (M, g) be a complete Riemannian manifold, Omega subset of Man open subset whose closure is homeomorphic to an annulus. We prove that if a,Omega is smooth and it satisfies a strong concavity assumption, then there are at least two distinct geodesics in starting orthogonally to one connected component of a,Omega and arriving orthogonally onto the other one. Using the results given in Giamb et al. (Adv Differ Equ 10:931-960, 2005), we then obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, the result is improved by showing the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinic orbits. In our proof we shall use recent deformation results proved in Giamb et al. (Nonlinear Anal Ser A: Theory Methods Appl 73:290-337, 2010).
Resumo:
Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
Resumo:
The minimum energy path along the lowest-lying pi pi* excited state of 2-aminopurine was calculated to elucidate the mechanisms of radiationless decay and emission in water. The sequential Monte Carlo quantum mechanics approach with a multiconfigurational and perturbative description of the wave function was employed to compute the minimum, transition state, and conical intersection. It was found that the barrier in the potential energy surface to access the conical intersection funnel increases in aqueous environment, making the system prone to enlarge the emission yield. These results rationalize the observed enhancement of emission in 2-aminopurine upon increasing of the solvent polarity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).
Resumo:
The nonadiabatic photochemistry of the guanine molecule (2-amino-6-oxopurine) and some of its tautomers has been studied by means of the high-level theoretical ab initio quantum chemistry methods CASSCF and CASPT2. Accurate computations, based by the first time on minimum energy reaction paths, states minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of the molecules lead to interpret the photochemistry of guanine and derivatives within a three-state model. As in the other purine DNA nucleobase, adenine, the ultrafast subpicosecond fluorescence decay measured in guanine is attributed to the barrierless character of the path leading from the initially populated (1)(pi pi* L-a) spectroscopic state of the molecule toward the low-lying methanamine-like conical intersection (gs/pi pi* L-a)(CI). On the contrary, other tautomers are shown to have a reaction energy barrier along the main relaxation profile. A second, slower decay is attributed to a path involving switches toward two other states, (1)(pi pi* L-b) and, in particular, (1)(n(o)pi*), ultimately leading to conical intersections with the ground state. A common framework for the ultrafast relaxation of the natural nucleobases is obtained in which the predominant role of a pi pi*-type state is confirmed.