7 resultados para Holiday cooking.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to compare some of the properties of native and extruded amaranth flour obtained under mild and severe extrusion conditions. The chemical composition of the flours was similar. Flours obtained by both extrusion processes presented high solubility in water, low values of L* (luminosity) and an absence of endothermic peak on the DSC method. Water absorption, retrogradation tendency, final viscosity and the viscous behavior by rheology analysis were also studied. The results indicate that extruded flours have a good potential as an ingredient for food exposed to heat treatment at a high temperature and mechanical shear, for use in instant meal products. On the other hand, original flour properties are comparable to those of amaranth starch, which exhibits similarly high quality paste stability, low solubility in water, and elastic behavior, and could be used as a substitute for raw flour in a range of food formulas. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This Study investigated the impact of thermoplastic extrusion on the nutritive quality of bovine rumen protein. Proximal composition, amino acid profile and in vivo true protein digestibility among rats were determined in raw (RBR) and extruded (EBR) rumen. Raw and extruded bovine rumen presented high percentages of protein (more than 95% on dry basis). Neither raw nor extruded proteins had any limiting amino acid, and the RBR and EBR amino acid scores were, respectively, 1.28 (leucine) and 1.25 (methionine plus cystine). Extrusion reduced significantly true protein digestibility from 97.7% to 93.1% (p < 0.001), but protein digestibility-corrected amino acid scores for both proteins (RBR and EBR) were 100%. Animal growth presented comparable profiles using raw and extruded rumen. In conclusion, thermoplastic extrusion did not affect the protein quality of bovine rumen, and this does not hinder the use of this material as a food ingredient. (C) 2009 Elsevier Ltd. Ail rights reserved.
Resumo:
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.
Resumo:
A fortified food that was rich in protein, vitamins and iron made of chickpea, bovine lung and corn was developed with the aim of controlling iron-deficiency anaemia in children from poorer areas. It was tested in Teresina, State of Piaui, Northeastern Brazil, on a population with high anaemia prevalence. Two local daycare units with similar characteristics were selected and the children at one of them received a 30 g pack three times a week, representing a total iron daily intake of 6.96 mg. The other daycare unit was followed as a control. The capillary haemoglobin concentration was determined for the children at both daycare units, at the beginning of the study and after a two-month intervention period. The mean haemoglobin concentration in the test group at the beginning of the intervention was 11.8 g/dL, which increased to 13.1 g/dL at the end of the intervention. In the control group these figures remained practically constant (11.6-11.8 g/dL). These represented a dramatic and significant drop in anaemia prevalence, from 61.5% to 11.5% in the test group, and an insignificant reduction (63.1-57.7%) in the control group. The acceptance of the fortified snack was excellent and no undesirable effects were observed. (C) 2007 Published by Elsevier Ltd.
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.
Resumo:
Defatted rumen protein and soy protein concentrate were extruded in a 15.5:1 L/D single-screw extruder at the optimum conditions for their expansion (150A degrees C and 35% moisture, and 130A degrees C and 35% moisture, respectively). Emulsions were produced with these proteins and studied by rheology and time domain low-resolution (1)H nuclear magnetic resonance (TD-NMR). Extrusion increased storage modulus of rumen protein emulsions. The opposite was observed for soy protein. Mechanical relaxation showed the existence of three relaxing components in the emulsions whose relative contributions were changed by extrusion. Likewise, spin-spin relaxation time constants (T (2)) measured by TD-NMR also showed three major distinct populations of protons in respect to their mobility that were also altered by extrusion. Extrusion increased surface hydrophobicity of both rumen and soy protein. Solubility of rumen protein increased with extrusion whereas soy protein had its solubility decreased after processing. Extrusion promoted molecular reorganization of protein, increasing its superficial hydrophobicity, affecting its interfacial properties and improving its emulsifying behavior. The results show that extrusion can promote the use of rumen, a by-product waste from the meat industry, in human nutrition by replacing soy protein in food emulsions.
Resumo:
Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography-mass spectrophotometry (MS) and by high-performance liquid chromatography-MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l(-1). Under these conditions, the surface tension of the culture decreased to 30 mN m(-1), and the critical micelle concentration was 26.5 mg l(-1). It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.