7 resultados para Hochschild Cohomology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Let G be a group. We give some formulas for the first group homology and cohomology of a group G with coefficients in an arbitrary G-module (Z) over tilde. More explicit calculations are done in the special cases of free groups, abelian groups and nilpotent groups. We also perform calculations for certain G-module M, by reducing it to the case where the coefficient is a G-module (Z) over tilde. As a result of the well known equalities H-1(X, M) = H-1(pi(1)(X), M) and H-1(X, M) = H-1(pi(1) (X), M), for any G-module M, we are able to calculate the first homology and cohomology groups of topological spaces with certain local system of coefficients.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
We develop an approach to the deformation quantization on the real plane with an arbitrary Poisson structure which is based on Weyl symmetrically ordered operator products. By using a polydifferential representation for the deformed coordinates, xj we are able to formulate a simple and effective iterative procedure which allowed us to calculate the fourth-order star product (and may be extended to the fifth order at the expense of tedious but otherwise straightforward calculations). Modulo some cohomology issues which we do not consider here, the method gives an explicit and physics-friendly description of the star products.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
Cohomology groups H(s)(Z(n), Z(m)) are studied to describe all groups up to isomorphism which are (central) extensions of the cyclic group Z(n) by the Z(n)-module Z(m). Further, for each such a group the number of non-equivalent extensions is determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).
Resumo:
Let G = Z/a x(mu) (Z/b x TL(2)(F(p))) and X(n) be an n-dimensional CW-complex with the homotopy type of the n-sphere. We determine the automorphism group Aut(G) and then compute the number of distinct homotopy types of spherical space forms with respect to free and cellular G-actions on all CW-complexes X(2dn - 1), where 2d is a period of G. Next, the group E(X(2dn - 1)/alpha) of homotopy self-equivalences of spherical space forms X(2dn - 1)/alpha, associated with such G-actions alpha on X(2dn - 1) are studied. Similar results for the rest of finite periodic groups have been obtained recently and they are described in the introduction. (C) 2009 Elsevier B.V. All rights reserved.