534 resultados para Histomorphometric analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Euro-Collins solution was developed for the preservation of organs for transplantation, whose characteristics have raised interest for its use as a storage medium for avulsed teeth before replantation. This study evaluated histologically and morphometrically the healing process of dog teeth replanted after storage in Euro-Collins solution or bovine milk. Materials and Methods: Eighty roots of 4 young adult mongrel clogs were randomly assigned to 4 groups (n = 20) and the root canals were instrumented and obturated with gutta-percha and a calcium hydroxide-based sealer. After 2 weeks, the teeth were extracted and subjected to the following protocols: GI (negative control), replantation immediately after extraction; GII (positive control), bench-drying for 2 hours before replantation; GIII and GIV, immersion in 10 mL of whole bovine milk and Euro-Collins solution at 4 C, respectively, for 8 hours before replantation. The animals were sacrificed 90 days postoperatively. The pieces containing the replanted teeth were subjected to routine processing for histologic and histometric analyses under light microscopy and polarized light microscopy. Results: Root resorption was observed in all groups. GII exhibited the greatest loss of dental structure (P < .01), and inflammatory resorption was predominant in this group. Storage in milk showed poorer results than immediate replantation and storage in Euro-Collins solution (P < .01). The teeth stored in Euro-Collins solution presented similar extension of root resorption and periodontal ligament reorganization to those of immediately replanted teeth. Conclusions: The findings of this study suggest that the Euro-Collins solution is an adequate storage medium for keeping avulsed teeth for up to 8 hours before replantation. Crown Copyright (C) 2010 Published by Elsevier Inc on behalf of American Association of Oral and Maxillofacial Surgeons. All rights reserved. Oral Maxillofac Surg 68:111-119, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our goal was to evaluate bone neoformation promoted by a bovine xenograft composite (XC) compared with autogenous graft for maxillary sinus augmentation in a rabbit model. The left maxillary sinus of 18 male rabbits was filled with 200 mg of cortical and cancellous autogenous bone and the right sinus was filled with 200 mg of a composite comprised organic and inorganic bovine matrices, pool of bBMPs and collagen. Postoperative implant intervals of 2, 4, and 8 weeks were analyzed. Differences in the bone optical density among the groups and experimental periods were evaluated by computed tomography analysis. The tissue response was evaluated by histomorphometric analysis of the newly formed bone, connective tissue and/or granulation tissue, residual material, and bone marrow. The tomographic analyses showed a maximum optical density in the 4-week period for both groups. Histologically, an inflammatory infiltrate was observed at 2 weeks in the XC group but exclusively around the organic particles of the biomaterial. Regarding to the amount of newly formed bone, no statistical differences (p > 0.05) were observed among the two treatments throughout the implant intervals. However, by the end of the 8 weeks, the quantity of bone marrow was two times greater (p < 0.05) in the control group than in the XC group. In conclusion, the xenograft composite promotes formation of new bone in a similar fashion to autogenous bone and could therefore be considered a biomaterial with potential applications as a bone substitute in maxillary sinus floor augmentation. (C) 2007 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the different properties that influence bone apposition around implants, the chemical or biochemical composition of implant surface may interfere on its acceptance by the surrounding bone. The aim of this study was to investigate if a biofunctionalization of implant surface influences the bone apposition in a dog model and to compare it with other surfaces, such as a microstructured created by the grit-blasting/acid-etching process. Eight young adult male mongrel dogs had the bilateral mandibular premolars extracted and each one received 6 implants after 12 weeks, totaling 48 implants in the experiment. Four groups of implants were formed with the same microrough topography with or without some kind of biofunctionalization treatment. After histomorphometric analysis, it was observed that the modified microstructured surface with a "low concentration of the bioactive peptide" provided a higher adjacent bone density (54.6%) when compared to the other groups (microstructured + HA coating = 46.0%, microstructured only = 45.3% and microstructured + "high concentration of the bioactive peptide" = 40.7%), but this difference was not statistically significant. In conclusion, biofunctionalization of the implant surface might interfere in the bone apposition around implants, especially in terms of bone density. Different concentrations of bioactive peptide lead to different results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicates (R)). Although a previous study demonstrated positive effects of Biosilicate (R) on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass (R) 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate group (R) (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate (R) and Bioglass (R) 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate (R) was superior to Bioglass (R) 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate (R) group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate (R) has good bone-forming and bone-bonding properties. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 978: 139-147, 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives The purpose of this study was to evaluate the effectiveness of the acellular dermal matrix (ADM) as a membrane for guided bone regeneration (GBR), in comparison with a bioabsorbable membrane. Material and methods In seven dogs, the mandibular pre-molars were extracted. After 8 weeks, one bone defect was surgically created bilaterally and the GBR was performed. Each side was randomly assigned to the control group (CG: bioabsorbable membrane made of glycolide and lactide copolymer) or the test group (TG: ADM as a membrane). Immediately following GBR, standardized digital X-ray radiographs were taken, and were repeated at 8 and 16 weeks post-operatively. Before the GBR and euthanasia, clinical measurements of the width and thickness of the keratinized tissue (WKT and TKT, respectively) were performed. One animal was excluded from the study due to complications in the TG during wound healing; therefore, six dogs remained in the sample. The dogs were sacrificed 16 weeks following GBR, and a histomorphometric analysis was performed. Area measurements of new tissue and new bone, and linear measurements of bone height were performed. Results Post-operative healing of the CG was uneventful. In the TG membrane was exposed in two animals, and one of them was excluded from the sample. There were no statistically significant differences between the groups for any histomorphometric measurement. Clinically, both groups showed an increase in the TKT and a reduction in the WKT. Radiographically, an image suggestive of new bone formation could be observed in both groups at 8 and 16 weeks following GBR. Conclusion ADM acted as a barrier in GBR, with clinical, radiographic and histomorphometric results similar to those obtained with the bioabsorbable membrane. To cite this article:Borges GJ, Novaes AB Jr, de Moraes Grisi MF, Palioto DB, Taba M Jr, de Souza SLS. Acellular dermal matrix as a barrier in guided bone regeneration: a clinical, radiographic and histomorphometric study in dogs.Clin. Oral Impl. Res. 20, 2009; 1105-1115.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim To compare the remodeling of the alveolar process at implants installed immediately into extraction sockets by applying a flap or a ""flapless"" surgical approach in a dog model. Material and methods Implants were installed immediately into the distal alveoli of the second mandibular premolars of six Labrador dogs. In one side of the mandible, a full-thickness mucoperiosteal flap was elevated (control site), while contra-laterally, the mucosa was gently dislocated, but not elevated (test site) to disclose the alveolar crest. After 4 months of healing, the animals were sacrificed, ground sections were obtained and a histomorphometric analysis was performed. Results After 4 months of healing, all implants were integrated (n=6). Both at the test and at the control sites, bone resorption occurred with similar outcomes. The buccal bony crest resorption was 1.7 and 1.5 mm at the control and the test sites, respectively. Conclusions ""Flapless"" implant placement into extraction sockets did not result in the prevention of alveolar bone resorption and did not affect the dimensional changes of the alveolar process following tooth extraction when compared with the usual placement of implants raising mucoperiosteal flaps. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Bressan E, Lang NP. Flap vs. ""flapless"" surgical approach at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 1314-1319.doi: 10.1111/j.1600-0501.2009.01959.x.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate, through histomorphometric analysis, the effect that different loading times would have on the bone response around implants. Materials and Methods: Three Replace Select implants were placed on each side of the mandible in eight dogs (n = 48 implants). One pair of implants was selected for an immediate loading protocol (IL). After 7 days, the second pair of implants received prostheses for an early loading protocol (EL). Fourteen days after implant placement, the third pair of implants received prostheses for advanced early loading (AEL). Following 12 weeks of prosthetics, counted following the positioning of the metallic crowns for the AEL group, the animals were sacrificed and the specimens were prepared for histomorphometric analysis. The differences between loading time in the following parameters were evaluated through analysis of variance: bone-to-implant contact, bone density, and crestal bone loss. Results: The mean percentage of bone-to-implant contact for IL was 77.9% +/- 1.71%, for EL it was 79.25% +/- 2.11%, and for AEL it was 79.42% +/- 1.49%. The mean percentage of bone density for IL was 69.97% +/- 3.81%, for EL it was 69.23% +/- 5.68%, and for AEL it was 69.19% +/- 2.90%. Mean crestal bone loss was 1.57 +/- 0.22 mm for IL, 1.23 +/- 0.19 mm for EL, and 1.17 +/- 0.32 mm for AEL. There was no statistical difference for any of the parameters evaluated (P > .05). Conclusion: Different early loading times did not seem to significantly affect the bone response around dental implants. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:473-481

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the bone repair using autogenous periosteum-derived cells (PDC) and bovine anorganic apatite and collagen (HA-COL). PDC from Wistar rats (n=10) were seeded on HA-COL discs and subjected to osteoinduction during 6 days. Critical-size defects in rat calvarias were treated with blood clot (G1), autogenous bone (G2), HA-COL (G3) and HA-COL combined with PDC (G4) (n=40), and then analyzed 1 and 3 months after surgeries. Radiographic analysis exhibited no significant temporal change. G1 and G2 had discrete new marginal bone, but the radiopacity of graft materials in G2, G3 and G4 impaired the detection of osteogenesis. At 3 months, histopathological analysis showed the presence of ossification islets in G1, which was more evident in G2, homogeneous new bone around HA-COL in G3 and heterogeneous new bone around HA-COL in G4 in addition to moderate presence of foreign body cells in G3 and G4. Histomorphometric analysis showed no change in the volume density of xenograft (p>0.05) and bone volume density in G2 was twice greater than in G1 and G4 after 3 months (p<0.05), but similar to G3. The PDC did not increase bone formation in vivo, although the biomaterial alone showed biocompatibility and osteoconduction capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-intensity electrical stimulation (LIES) may counteract the effects of ovariectomy (OVX) on nitric oxide synthase (NOS) expression, osteocyte viability, bone structure, and microarchitecture in rats (Lirani-Galvo et al., Calcif Tissue Int 84:502-509, 2009). The aim of the present study was to investigate if these effects of LIES could be mediated by NO. We analyzed the effects of NO blockage (by l-NAME) in the response to LIES on osteocyte viability, bone structure, and microarchitecture in OVX rats. Sixty rats (200-220 g) were divided into six groups: sham, sham-l-NAME (6 mg/kg/day), OVX, OVX-l-NAME, OVX-LIES, and OVX-LIES-l-NAME. After 12 weeks, rats were killed and tibiae collected for histomorphometric analysis and immunohistochemical detection of endothelial NOS (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). In the presence of l-NAME, LIES did not counteract the OVX-induced effects on bone volume and trabecular number (as on OVX-LIES). l-NAME blocked the stimulatory effects of LIES on iNOS and eNOS expression of OVX rats. Both l-NAME and LIES decreased osteocyte apoptosis. Our results showed that in OVX rats l-NAME partially blocks the effects of LIES on bone structure, turnover, and expression of iNOS and eNOS, suggesting that NO may be a mediator of some positive effects of LIES on bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low Intensity Electrical Stimulation (LIES) has been used for bone repair, but little is known about its effects on bone after menopause. Osteocytes probably play a role in mediating this physical stimulus and they could act as transducers through the release of biochemical signals, such as nitric oxide (NO). The aim of the present study was to investigate the effects of LIES on bone structure and remodeling, NOS expression and osteocyte viability in ovariectomized (OVX) rats. Thirty rats (200-220 g) were divided into 3 groups: SHAM, OVX, and OVX subjected to LIES (OVX + LIES) for 12 weeks. Following the protocol, rats were sacrificed and tibias were collected for histomorphometric analysis and immunohistochemical detection of endothelial NO synthase (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). OVX rats showed significant (p < 0.05 vs. SHAM) decreased bone volume (10% vs. 25%) and trabecular number (1.7 vs. 3.9), and increased eroded surfaces (4.7% vs. 3.2%) and mineralization surfaces (15.9% vs. 7.7%). In contrast, after LIES, all these parameters were significantly different from OVX but not different from SHAM. eNOS and iNOS were similarly expressed in subperiosteal regions of tibiae cortices of SHAM, not expressed in OVX, and similarly expressed in OVX + LIES when compared to SHAM. In OVX, the percentage of apoptotic osteocytes (24%) was significantly increased when compared to SHAM (11%) and OVX + LIES (8%). Our results suggest that LIES counteracts some effects of OVX on bone tissue preserving bone structure and microarchitecture, iNOS and eNOS expression, and osteocyte viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: It has long been demonstrated that epidermal growth factor (EGF) has catabolic effects oil bone. Thus. we examined the role of EGF in regulating mechanically induced bone modeling in a rat model of orthodontic tooth movement. Main methods: The maxillary first molars of rats were moved mesially using an orthodontic appliance attached to the maxillary incisor teeth. Rats were randomly divided into 4 groups: (G1) administration of PBS (Phosphate buffer saline Solution (n = 24); (G2) administration of empty liposomes (it = 24): (Q) administration 20 rig of EGF Solution (n = 24): and (G4) 20 ng of EGF-liposomes Solution (it = 24). Each Solution was injected in the mucosa of the left first molar adjacent to the appliance. At days 5, 10, 14 and 2 1 after drug administration. 6 animals of each group were sacrificed. Histomorphometric analysis was used to quantify osteoclasts (Tartrate-resistant acid phosphatase (TRAP) + cells) and tooth movement. Using immunohistochemistry assay we evaluated the RANKL (receptor activator of nuclear factor kappa B ligand) and epidermal growth factor receptor (EGFR) expression. Key findings: The EGF-liposome administration showed an increased tooth movement and osteoclast numbers compared to controls (p<0.05). This was correlated with intense RANKL expression. Both osteoblasts and osteoclasts expressed EGFR. Significance: Local delivery of EGF-liposome stimulates, osteoclastogenesis and tooth movement. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and objectives: As well as being a marker of body iron stores, serum ferritin (sFerritin) has also been shown to be a marker of inflammation in hemodialysis (HD) patients. The aim of this study was to analyze whether sFerritin is a reliable marker of the iron stores present in bone marrow of HD patients. Design: Histomorphometric analysis of stored transiliac bone biopsies was used to assess iron stores by determining the number of iron-stained cells per square millimeter of bone marrow. Results: In 96 patients, the laboratory parameters were hemoglobin = 11.3 +/- 1.6 g/dl, hematocrit = 34.3 +/- 5%, sFerritin 609 +/- 305 ng/ml, transferrin saturation = 32.7 +/- 22.5%, and C-reactive protein (CRP) = 0.9 +/- 1.4 mg/dl. sFerritin correlated significantly with CRP, bone marrow iron, and time on HD treatment W = 0.006, 0.001, and 0.048, respectively). The independent determinants of sFerritin were CRP (beta-coef = 0.26; 95% CI = 24.6 to 132.3) and bone marrow iron (beta-coef = 0.32; 95% CI = 0.54 to 2.09). Bone marrow iron was higher in patients with sFerritin >500 ng/ml than in those with sFerritin :5500 ng/ml. In the group of patients with sFerritin :5500 ng/ml, the independent determinant of sFerritin was bone marrow iron (beta-coef = 0.48, 95% CI = 0.48 to 1.78), but in the group of patients with sFerritin >500 ng/ml, no independent determinant of sFerritin was found. Conclusions: sFerritin adequately reflects iron stores in bone marrow of HD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathophysiology of hepatic osteodystrophy (HO) remains poorly understood. Our aim was to evaluate bone histomorphometry, biomechanical properties, and the role of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) system in the onset of this disorder. Forty-six male Wistar rats were divided into two groups: sham-operated (SO, n = 23) and bile duct-ligated (BDL, n = 23). Rats were killed on day 30 postoperatively. Immunohistochemical expression of IGF-I and GH receptor was determined in liver tissue and in the proximal growth plate cartilage of the left tibia. Histomorphometric analysis was performed in the right tibia, and the right femur was used for biomechanical analysis. The maximal force at fracture and the stiffness of the mid-shaft femur were, respectively, 53% and 24% lower in BDL compared to SO. Histomorphometric measurements showed low cancellous bone volume and decreased cancellous bone connectivity in BDL, compatible with osteoporosis. This group also showed increased mineralization lag time, indicating disturbance in bone mineralization. Serum levels of IGF-I were lower in BDL (basal 1,816 +/- A 336 vs. 30 days 1,062 +/- A 191 ng/ml, P < 0.0001). BDL also showed higher IGF-I expression in the liver tissue but lower IGF-I and GH receptor expression in growth plate cartilage than SO. Osteoporosis is the most important feature of HO; BDL rats show striking signs of reduced bone volume and decreased bone strength, as early as after 1 month of cholestasis. The endocrine and autocrine-paracrine IGF-I systems are deeply affected by cholestasis. Further studies will be necessary to establish their role in the pathogenesis of HO.