28 resultados para Highly Crystalline Polyaniline Films Novel Hybrid Polymers as Emissive Layers

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of conducting islands in polyaniline films has long been proposed in the literature, which would be consistent with conducting mechanisms based on hopping. Obtaining direct evidence of conducting islands, however, is not straightforward. In this paper, conducting islands were visualized in poly(o-ethoxyaniline) (POEA) films prepared at low pH, using Transmission Electron Microscopy (TEM) and atomic force spectroscopy (AFS). The size of the islands varied between 67 and 470 angstrom for a pH=3.0, with a larger average being obtained with AFS, probably due to the finite size effect of the atomic force microscopy tip. In AFS, the conducting islands were denoted by regions with repulsive forces due to the double-layer forces. On the basis of X-ray diffraction (XRD) patterns for POEA in the powder form, we infer that the conducting islands are crystalline, and therefore a POEA film is believed to consist of conducting islands dispersed in an insulating, amorphous matrix. From conductivity measurements we inferred the charge transport to be governed by a typical quasi-one dimensional variable range hopping (VRH) mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaniline is a conducting polymer with appealing electrical and optical properties, arising from the -conjugation along the polymer backbone. The understanding of its excited state absorption is of prime importance for designing and fabricating optical devices. Here, we report on the study of the excited state absorption of doped and undoped PANI by using femtosecond pulses in the spectral range from 450nm up to 850nm. For undoped PANI, we observed saturation of absorption as well as reverse saturable absorption, depending on the excitation wavelength. For doped PANI, however, only saturable absorption was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of carbon nanotubes in conjunction with a chemical or biological recognition element into a semiconductor field-effect device (FED) may lead to new (bio)chemical sensors. In this study, we present a new concept to develop field-effect-based sensors, using a light-addressable potentiometric sensor (LAPS) platform modified with layer-by-layer (LbL) films of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. Film growth was monitored for each layer adsorbed on the LAPS chip by Measuring current-voltage (IIV) curves. The morphology of the films was analyzed via atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), revealing the formation of a highly interconnected nanostructure of SWNTs-network into the dendrimer layers. Constant current (CC) Measurements showed that the incorporation of the PAMAM/SWNT LbL film containing LIP to 6 bilayers onto the LAPS Structure has a high pH sensitivity of ca. 58 mV/pH. The biosensing ability of the devices was tested for penicillin G via adsorptive immobilization of the enzyme penicillinase atop the LgL film. LAPS architectures modified with the LbL film exhibited higher sensitivity, ca. 100 mV/decade, in comparison to ca. 79 mV/decade for all unmodified LAPS, which demonstrates the potential application of the CNT-LbL Structure in field-effect-based (bio)chemical sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of the parameters as aniline: MnO(2) and temperature on synthesis of polyaniline/MnO(2) composites was performed. The composites were chemically prepared in H(2)SO(4) media using different aniline: MnO(2) ratios at 0 degrees C. After the ratio optimization, the syntheses were performed at 20 degrees C. The polyaniline/MnO(2) composites were characterized by scanning electron microscopy (SEM), ultraviolet-visible, near infrared and infrared spectroscopic techniques. Composites obtained with a uniform, homogeneous and thicker coating of polyaniline films under oxide was considered as the best condition for synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The electrical properties of conducting polymers make them useful materials in a wide number of technological applications. In the last decade, an important effect on the properties of the conducting polymer when iron oxides particles are incorporated into the conductive matrix was shown. In the present study, films of polypyrrole were synthesized in the presence of magnetite particles. The effect of the magnetite particles on the structure of the polymer matrix was determined using Raman spectroscopy. Mass variations at different concentrations of Fe(3)O(4) incorporated into the conducting matrix were also measured by means of quartz crystal microbalance. Additionally, the changes in the resistance of the films were evaluated over time by electrochemical impedance spectroscopy in solid state. These results show that the magnetite incorporation decreases polymeric film resistance and Raman experiments have evidenced that the incorporation of magnetite into polymeric matrix not only stabilizes the polaronic form of the polypyrrole, but also preserves the polymer from further oxidation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure and local ordering of 1,6-hexamethylenediisocyanate-(acetoxypropy1) cellulose (HDI-APC) liquid crystalline elastomer thin films are investigated by using X-ray diffraction and scattering techniques. Optical microscopy and mechanical essays are performed to complement the investigation. The study is performed in films subjected or not to an uniaxial stress. Our results indicate that the film is constituted by a bundle of helicoidal fiber-like structure, where the cellobiose block spins around the axis of the fiber, like a string-structure in a smectic-like packing, with the pitch defined by a smectic-like layer. The fibers are in average perpendicular to the smectic-like planes. Without the stretch, these bundles are warped, only with a residual orientation along the casting direction. The stretch orients the bundles along it, increasing the smectic-like and the nematic-like ordering of the fibers. Under stress, the network of molecules which connects the cellobiose blocs and forms the cellulosic matrix tends to organize their links in a hexagonal-like structure with lattice parameter commensurate to the smectic-like structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Irradiation with heavy ions can produce several modifications in the chain structure of polymers. These modifications can be related to scissioning and cross-linking of chemical bonds. which depend on the ion fluence and the density of energy deposited in the material. Stacked thin film Makrofol-KG (R) samples were irradiated with 350 MeV Au(26+) ions and FTIR absorption spectroscopy was used to determine the bond changes in the samples. Data on the absorption bands as a function of the fluence indicated a higher probability for simple-bonds scissioning than for double-bonds scissioning and no dependence on the number of double bonds breaking with ion fluence. Since sample irradiation was done in a non-track-overlapping regime, a novel process for double bonds formation is suggested: the excitation of a site in the material by only one incident ion followed by a double bond formation during the de-excitation process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.