4 resultados para Hermite
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.