3 resultados para Hemolysis and hemolysins
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.
Resumo:
Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micro were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBM0583-like) while cluster C2 harbored two genotypes (ATC03270-like and ICBM036). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Traditional venom immunotherapy uses injections of whole bee venom in buffer or adsorbed in Al (OH)(3) in an expensive, time-consuming way. New strategies to improve the safety and efficacy of this treatment with a reduction of injections would, therefore, be of general interest. It would improve patient compliance and provide socio-economic benefits. Liposomes have a long tradition in drug delivery because they increase the therapeutic index and avoid drug degradation and secondary effects. However, bee venom melittin (Mel) and phospholipase (PLA(2)) destroy the phospholipid membranes. Our central idea was to inhibit the PLA(2) and Mel activities through histidine alkylation and or tryptophan oxidation (with pbb, para-bromo-phenacyl bromide, and/or NBSN-bromosuccinimide, respectively) to make their encapsulations possible within stabilized liposomes. We strongly believe that this formulation will be nontoxic but immunogenic. In this paper, we present the whole bee venom conformation characterization during and after chemical modification and after interaction with liposome by ultraviolet, circular dichroism, and fluorescence spectroscopies. The PLA(2) and Mel activities were, measured indirectly by changes in turbidity at 400(nm), rhodamine leak-out, and hemolysis. The native whole bee venom (BV) presented 78.06% of alpha-helical content. The alkylation (A-BV) and succynilation (S-BV) of BV increased 0.44 and 0.20% of its alpha-helical content. The double-modified venom (S-A-BV) had a 0.74% increase of alpha-helical content. The BV chemical modification induced another change on protein conformations observed by Trp that became buried with respect to the native whole BV. It was demonstrated that the liposomal membranes must contain pbb (SPC:Cho:pbb, 26:7:1) as a component to protect them from aggregation and/or fusion. The membranes containing pbb maintained the same turbidity (100%) after incubation with modified venom, in contrast with pbb-free membranes that showed a 15% size decrease. This size decrease was interpreted as membrane degradation and was corroborated by a 50% rhodamine leak-out. Another fact that confirmed our interpretation was the observed 100% inhibition of the hemolytic activity after venom modification with pbb and NBS (S-A-BV). When S-A-BV interacted with liposomes, other protein conformational changes were observed and characterized by the increase of 1.93% on S-A-BV alpha-helical content and the presence of tryptophan residues in a more hydrophobic environment. In other words, the S-A-BV interacted with liposomal membranes, but this interaction was not effective to cause aggregation, leak-out, or fusion. A stable formulation composed by S-A-BV encapsulated within liposomes composed by SPC:Cho:pbb, at a ratio of 26:7:1, was devised. Large unilamellar vesicles of 202.5 nm with a negative surface charge (-24.29 mV) encapsulated 95% of S-A-BV. This formulation can, now, be assayed on VIT.