6 resultados para Helium ion beam

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin zirconium nitride films were prepared on Si(l 00) substrates at room temperature by ion beam assisted deposition with a 2 keV nitrogen ion beam. Arrival rate ratios ARR(N/Zr) used were 0.19, 0.39, 0.92, and 1.86. The chemical composition and bonding structure of the films were analyzed with X-ray photoelectron spectroscopy (XPS). Deconvolution results for Zr 3d, Zr 3p(3/2), N 1s, O 1s, and C 1s XPS spectra indicated self-consistently the presence of metal Zr-0, nitride ZrN, oxide ZrO2, oxymnide Zr2N2O, and carbide ZrC phases, and the amounts of these compounds were influenced by ARR(N/Zr). The chemical composition ratio N/Zr in the film increased with increasing ARR(N/Zr) until ARR(N/Zr) reached 0.92, reflecting the high reactivity of nitrogen in the ion beam, and stayed almost constant for ARR(N/Zr) >= 1, the excess nitrogen being rejected from the growing film. A considerable incorporation of contaminant oxygen and carbon into the depositing film was attributed to the getter effect of zirconium. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irradiation with heavy ions can produce several modifications in the chain structure of polymers. These modifications can be related to scissioning and cross-linking of chemical bonds. which depend on the ion fluence and the density of energy deposited in the material. Stacked thin film Makrofol-KG (R) samples were irradiated with 350 MeV Au(26+) ions and FTIR absorption spectroscopy was used to determine the bond changes in the samples. Data on the absorption bands as a function of the fluence indicated a higher probability for simple-bonds scissioning than for double-bonds scissioning and no dependence on the number of double bonds breaking with ion fluence. Since sample irradiation was done in a non-track-overlapping regime, a novel process for double bonds formation is suggested: the excitation of a site in the material by only one incident ion followed by a double bond formation during the de-excitation process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin silicon nitride films were prepared at 350 degrees C by inductively coupled plasma chemical vapor deposition on Si(100) substrates under different NH(3)/SiH(4) or N(2)/SiH(4) gas mixture. The chemical composition and bonding structure of the deposited films were investigated as a function of the process parameters, such as the gas flow ratio NH(3)/SiH(4) or N(2)/SiH(4) and the RF power, using X-ray photoelectron spectroscopy (XPS). The gas flow ratio was 1.4, 4.3, 7.2 or 9.5 and the RF power, 50 or 100 W. Decomposition results of Si 2p XPS spectra indicated the presence of bulk Si, under-stoichiometric nitride, stoichiometric nitride Si(3)N(4), oxynitride SiN(x)O(y), and stoichiometric oxide SiO(2), and the amounts of these compounds were strongly influenced by the two process parameters. These results were consistent with those obtained from N 1s XPS spectra. The chemical composition ratio N/Si in the film increased with increasing the gas flow ratio until the gas flow ratio reached 4.3, reflecting the high reactivity of nitrogen, and stayed almost constant for further increase in gas flow ratio, the excess nitrogen being rejected from the growing film. A considerable and unexpected incorporation of contaminant oxygen and carbon into the depositing film was observed and attributed to their high chemical reactivity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang(1); in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ((4)(He) over bar), also known as the anti-alpha ((alpha) over bar), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the alpha-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level(2). Antimatter nuclei with B -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon(3-5). Here we report the observation of (4)<(He) over bar, the heaviest observed antinucleus to date. In total, 18 (4)(He) over bar counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic(7) and coalescent nucleosynthesis(8) models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of (4)(He) over bar in cosmic radiation.