3 resultados para Helium Hamiltonian
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A Hamiltonian system perturbed by two waves with particular wave numbers can present robust tori, which are barriers created by the vanishing of the perturbed Hamiltonian at some defined positions. When robust tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. Our results indicate that the considered particular solution for the two waves Hamiltonian model shows plenty of robust tori blocking radial transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang(1); in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ((4)(He) over bar), also known as the anti-alpha ((alpha) over bar), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the alpha-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level(2). Antimatter nuclei with B -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon(3-5). Here we report the observation of (4)<(He) over bar, the heaviest observed antinucleus to date. In total, 18 (4)(He) over bar counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic(7) and coalescent nucleosynthesis(8) models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of (4)(He) over bar in cosmic radiation.
Resumo:
We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.