3 resultados para Heat treatments
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this paper is to report the sensitization of the TL peak appearing at 270 degrees C in the glow curve of natural quartz by using the combined effect of heat-treatments and irradiation with high gamma doses. For this, thirty discs with 6 x 1 mm(2) were prepared from plates parallell to a rhombolledral crystal face. The specimens were separated into four lots according to its TL read out between 160 and 320 degrees C. One lot was submitted to gamma doses of Co-60 radiation starting at 2 kGy and going up until a cumulative dose of 25 kGy. The other three lots were initially heal-treated at 500, 800 and 1000 degrees C and then irradiated with a single dose of 25kGy. The TL response of each lot was determined as a function of test-doses ranging from 0.1 to 30 mGy. As a result, it was observed that heat-treatments themselves did not produce the strong peak at 270 degrees C that was observed after the administration of high gamma doses. This peak is associated with the optical absorption band appearing at 470 rim which is due to the formation of [AlO4]degrees acting as electron-hole recombination centers. The formation of the 270 degrees C peak was preliminary analyzed in relation to aluminum- and oxygen-vacancy-related centers found in crystalline quartz. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.
Resumo:
In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.