1 resultado para Hartford National Bank and Trust Company
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (4)
- Aquatic Commons (38)
- Archive of European Integration (34)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biodiversity Heritage Library, United States (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (36)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (35)
- Center for Jewish History Digital Collections (1)
- Central European University - Research Support Scheme (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (29)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (7)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (9)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (2)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (49)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (317)
- University of Queensland eSpace - Australia (22)
- University of Washington (3)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper proposes an improved voice activity detection (VAD) algorithm using wavelet and support vector machine (SVM) for European Telecommunication Standards Institution (ETS1) adaptive multi-rate (AMR) narrow-band (NB) and wide-band (WB) speech codecs. First, based on the wavelet transform, the original IIR filter bank and pitch/tone detector are implemented, respectively, via the wavelet filter bank and the wavelet-based pitch/tone detection algorithm. The wavelet filter bank can divide input speech signal into several frequency bands so that the signal power level at each sub-band can be calculated. In addition, the background noise level can be estimated in each sub-band by using the wavelet de-noising method. The wavelet filter bank is also derived to detect correlated complex signals like music. Then the proposed algorithm can apply SVM to train an optimized non-linear VAD decision rule involving the sub-band power, noise level, pitch period, tone flag, and complex signals warning flag of input speech signals. By the use of the trained SVM, the proposed VAD algorithm can produce more accurate detection results. Various experimental results carried out from the Aurora speech database with different noise conditions show that the proposed algorithm gives considerable VAD performances superior to the AMR-NB VAD Options 1 and 2, and AMR-WB VAD. (C) 2009 Elsevier Ltd. All rights reserved.