2 resultados para Habsburg, Otto (1912-2011) -- Portraits
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.