6 resultados para HUMAN CU

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen [O-2 ((1)Delta(g))]. In this study, two cis- and trans-tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. These photoproducts underwent thermal decay into the corresponding alcohols. Additionally, WOOHs were shown to decompose under heating or basification, leading to the formation of N-formylkynurenine (FMK). Using O-18-labeled hydroperoxides ((WOOH)-O-18-O-18), it was possible to confirm the formation of two oxygen-labeled FMK molecules derived from (WOOH)-O-18-O-18 decomposition. This result demonstrates that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ubiquitous Pseudallescheria boydii (anamorph Scedosporium apiospermum) is a saprophytic filamentous fungus recognized as a potent etiologic agent of a wide variety of infections in immunocompromised as well as in immunocompetent patients. Very little is known about the virulence factors expressed by this fungal pathogen. The present review provides an overview of recent discoveries related to the identification and biochemical characterization of potential virulence attributes produced by P. boydii, with special emphasis on surface and released molecules. These structures include polysaccharides (glucans), glycopeptides (peptidorhamnomannans), glycolipids (glucosylceramides) and hydrolytic enzymes (proteases, phosphatases and superoxide dismutase), which have been implicated in some fundamental cellular processes in P. boydii including growth, differentiation and interaction with host molecules. Elucidation of the structure of cell surface components as well as the secreted molecules, especially those that function as virulence determinants, is of great relevance to understand the pathogenic mechanisms of P. boydii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach of using a gold disc microelectrode to analyze sweat samples for copper ions by anodic square wave stripping voltammetry (SW stripping voltammetry) is described Sweat was collected from the lower back of four subjects after physical exercise and the sample volume required for the determinations was 100 mu L. Under the optimized conditions the calibration plot was linear over the range 1-100 mu mol L(-1) Cu(II) with a limit of detection of 0 25 mu mol L(-1) The precision was evaluated by carrying out five replicate measurements in a 1 mu mol L(-1) Cu(II) solution and the standard deviation was found to be 1 5% Measurements were performed by inserting the microelectrode into sweat drops and Cu(II) concentrations in the analyzed samples ranged from 09 to 28 mu mol L(-1) Values obtained by the proposed voltammetric method agreed well with those found using graphite furnace atomic absorption spectroscopy (GFAAS) (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log K(CuL) in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log K(CuHSA) 16.2. Some of the complexes are also able to interfere in the a-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L -> Cu(II) donation, and Cu(II) -> L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma. (C) 2009 Elsevier Inc. All rights reserved.