54 resultados para H-1 MAS NMR

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the use of proton nuclear magnetic resonance, (1)H NMR, was fully described as a powerful tool to follow a photoreaction and to determine accurate quantum yields, so called true quantum yields (Phi(true)), when a reactant and photoproduct absorption overlap. For this, Phi(true) for the trans-cis photoisomerization process were determined for rhenium(I) polypyridyl complexes, fac-[Re(CO)(3)(NN)(trans-L)](+) (NN = 1,10-phenanthroline, phen, or 4,7-diphenyl-1,10-phenanthroline, ph(2)phen, and L = 1,2-bis(4-pyridyl) ethylene, bpe, or 4-styrylpyridine, stpy). The true values determined at 365 nm irradiation (e. g. Phi(NMR) = 0.80 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)) were much higher than those determined by absorption spectral changes (Phi(UV-Vis) = 0.39 for fac-[Re(CO)(3)(phen)(trans-bpe)](+)). Phi(NMR) are more accurate in these cases due to the distinct proton signals of trans and cis-isomers, which allow the actual determination of each component concentration under given irradiation time. Nevertheless when the photoproduct or reactant contribution at the probe wavelength is negligible, one can determine Phi(true) by regular absorption spectral changes. For instance, Phi(313) nm for free ligand photoisomerization determined both by absorption and (1)H NMR variation are equal within the experimental error (bpe: Phi(UV-Vis) = 0.27, Phi(NMR) = 0.26; stpy: Phi(UV-Vis) = 0.49, Phi(NMR) = 0.49). Moreover, (1)H NMR data combined with electronic spectra allowed molar absorptivity determination of difficult to isolate cis-complexes. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complete assignment of the (1)H and (13)C NMR spectra of the diastereomeric pairs of some alpha-arylsulfinyl-substituted N-methoxy-N-methylpropionamides with the substituents methoxy, methyl, chloro, nitro is reported. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, Delta G(s)degrees in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. (1)H NMR studies of the interaction of 1 and metal cations were carried out in CD(3)CN and CD(3)OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1: 1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmiu (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure show`s a 1:1 stoichiometry in the Hg(II) complex. The themiodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ""Ru(P-P)"" unit (P-P = diphosphine) is recognized to be an important core in catalytic species for hydrogenation of unsaturated organic substrates. Thus, in this study we synthesized six new complexes containing this core, including the binuclear complex [(dppb)(CO)Cl(2)Ru-pz-RuCl(2)(CO)(dPPb)] (pz = pyrazine) which can be used as a precursor for the synthesis of cationic carbonyl species of general formula [RuCl(CO)(dppb)(N-N)]PF(6) (N-N = diimine). Complexes with the formula (RuCl(py)(dppb)(N-N)]PF(6) were synthesized by exhaustive electrolysis of these carbonyl compounds or from the precursors [RuCl(2)(dppb)(N-N)]. The new complexes were characterized by microanalysis, conductivity measurements, IR and (31)P{(1)H)} NMR spectroscopy, cyclic voltammetry and X-ray crystallography. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate) was produced in fed-batch cultures of Ralstonia eutropha DSM 428 and Alcaligenes latus ATCC 29712 on a mineral medium with different carbon sources such as sucrose, sodium lactate, lactic acid, soybean oil and fatty acid. The bacteria converted the different carbon sources supplied into P3HB. The best results were obtained when lactate or soybean oil were supplied as the sole carbon source. The range of number average molar mass (Mn) for the polymers, analyzed by Gel Permeation Chromatography was 1.65 to 0.79 x 10(5) g mol(-1). FTIR spectroscopy revealed a characteristic absorbance associated with polyester structures. The crystallinity degree, determinate from X-ray diffractograms, was about 69% in all synthesized polymers. The thermal properties associated to semicrystalline polymers indicated a glass transition at 0.1 degrees C and a melting point at about 175 degrees C and enthalpy of 63-89 J g(-1). The (1)H-NMR and (13)C-NMR spectra of the polymers were in agreement with the calculated chemical shifts associated with P3HB structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex fac-[RuCl(3)(NO)(P-N)] (1) was synthesized from the reaction of [RuCl(3)(H(2)O)(2)(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl(3)(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer, cis-[RuCl(3)(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo-or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated. The complexes were characterized by NMR ((31)P{(1)H}, (15)N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The (31)P{(1)H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The (1)H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH(2)Cl(2) solution presented 1866 and 1872 cm(-1) for (1) and 1841 and 1860 cm(-1) for (2). Electrochemical analysis revealed a irreversible reduction attributed to Ru(II)-NO(+) -> Ru(II)-NO(0) at -0.81 V and -0.62 V, for (1) and (2), respectively; the process Ru(II) -> Ru(III), as expected, is only observed around 2.0 V, for both complexes. Studies were conducted using (15)NO and both complexes were isolated with (15)N-enriched NO. Upon irradiation, the complex fac-[RuCl(3)(NO)(P-N)] (1) does not exchange (14)NO by (15)NO, while complex mer, trans-[RuCl(3)(NO)(P-N)] (2) does. Complex mer, trans-[RuCl(3)((15)NO)(P-N)] (2`) was obtained by direct reaction of mer, trans-[RuCl(3)(NO)(P-N)] (2) with (15)NO and the complex fac-[RuCl(3)((15)NO)(P-N)] (1`) was obtained by thermal-isomerization of mer, trans-[RuCl(3)((15)NO)(P-N)] (2`). DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%). (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction of cis-[RuCl(2)(P-P)(N-N)] type complexes (P-P = 1,4-bis(diphenylphosphino)butane or (1,1`-diphenylphosphino)ferrocene; N-N = 2,2`-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P-P)(N-N)](+) species Upon characterization of the isolated compounds by elemental analysis, (31)P{(1)H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good pi acceptor, coordinates trans to the nitrogen atom. A (31)P{(1)H} NMR experiment following the reaction of the precursor cis-[RuCl(2)(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N-N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF(6) species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pure N,N`-di(methoxycarbonylsulfenyl)urea, [CH(3)OC(O)SNH](2)CO, is quantitatively prepared by the hydrolysis reaction of CH(3)OC(O)SNCO and characterized by (1)H NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach with data obtained from X-ray diffraction, vibrational spectra and theoretical calculation methods. The IR and Raman spectra for normal and deuterated species are reported. The crystal structure of [CH(3)OC(O)SNH](2)CO was determined by X-ray diffraction methods. The substance crystallizes in the orthorhombic P2(1)2(1)2 space group with a = 9.524(2), b = 12.003(1), c = 4.481 (1) angstrom, and Z = 2 moieties in the unit cell. The molecule is sited on a twofold crystallographic axis (C(2)) parallel to c and shows the anti-anti conformation (S-N single bonds antiperiplanar with respect to the opposite C-N single bonds in sulfenyl-urea-sic group). Neighboring molecules are arranged in a chain motif that extends along the C(2)-axis and is held by bifurcated NH center dot center dot center dot O center dot center dot center dot HN intermolecular bonds. A local planar symmetry is observed in the crystal for the central -SN(H)C(O)N(H)S- skeleton. Experimental and calculated data allow to trace this structural feature to the occurrence of N-H center dot center dot center dot O=C hydrogen bonding interactions. Calculated vibrational and structural properties are in good agreement with the experimentally determined features. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).