2 resultados para Gynoecium
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Structure of inflorescences and flowers and flowering behaviour are reported for the woody liana Anchietea pyrifolia (Violaceae) from Brazil. The specimen studied is grown for some decades now in the greenhouses of Halle Botanical Garden and turned out unisexually male, which adds a further example of dioecism to the family Violaceae, in which this type of sex distribution is rarely encountered. The flowers are exceptional also for the strongly asymmetric anterior petal, which represents a rare case of a species with enantiomorphic flowers pollinated by Lepidoptera. They have a fully developed gynoecium with a complicated architecture comparable to the pistil of bisexual Violaceae flowers, though without ovules. The style head is capable to release viscose liquid on tactile stimulation or pressure, which is known to act as pollen-gathering mechanism in bisexual Violaceae species with usually dry pollen and buzz-pollination. This function has switched in male A. pyrifolia to a mechanism for efficient pollen release mediated by insect pollinators from its short-lived flowers. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time-calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 378-390.