3 resultados para Ground plane inclined
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.