18 resultados para Greenstone belts

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on density functional theory studies of the electronic structure and magnetic properties of Mobius-[n]cyclacenes. The geometry of Mobius bands presents a modulation of bond lengths that is needed to accommodate the twist. This modulation takes the form of bond alternation defects analogous to those of solitons in polyacetylene. The ground state of all Mobius bands is a triplet, with a spin density distribution that follows the bond length modulation. A molecular dynamics simulation of the Mobius cyclacene at 300 K shows that the twist travels around the belt inducing a magnetic current. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South-American continent is constituted of three major geologic-geotectonic entities the homonym platform (consolidated at the end of the Cambrian) the Andean chain (essentially Meso-Cenozoic) and the Patagonian terrains affected by tectonism and magmatism through almost all of the Phanerozoic The platform is constituted by a series of cratonic nuclei (pre-Tonian fragments of the Rodinia fission) surrounded by a complex fabric of Neoproterozoic structural provinces Two major groups of orogenic processes (plate interaction cycles) constitute the evolution of these provinces the older occurred in the Tonian (smaller in area) and the younger Brasiliano that is present in all provinces The Tonian cycles (pre-Rodinia fission?) are still being sorted out and many questions still need to be answered The Brasiliano orogenic collage events (post-Rodinia fission?) developed in three main stages in part coeval from a province to another and are 650-600 580-560 and 540-500 Ma respectively (the late event reaching the Ordovician) The first group of orogenies is recorded in practically all provinces The third group is restricted to part of the Mantiqueira Province (southeast of the platform Buzios Orogeny) and present in the Pampean province (SW of the platform) For all these groups of orogenic events there are considerable records of rock assemblages related to processes of convergent plate interaction opening accretion collision and further extrusion There is a good correlation between the geologic and geotectonic data and geochemical and isotopic data The late tectonic processes (post-orogenic magmatism foreland basins etc) of the first two groups compete in time in distinct spaces with the peak of orogenic processes in the third group The introduction of the SHRIMP U-Pb methodology was fundamental to separate the Tonian and post-Tonian orogenic groups and their respective divisions in time and space Thus there are still many open points/problems which lead to expectations of addressing these issues in the near future with the more Intense use of this methodology (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present models for the upper-mantle velocity structure beneath SE and Central Brazil using independent tomographic inversions of P- and S-wave relative arrival-time residuals (including core phases) from teleseismic earthquakes. The events were recorded by a total of 92 stations deployed through different projects, institutions and time periods during the years 1992-2004. Our results show correlations with the main tectonic structures and reveal new anomalies not yet observed in previous works. All interpretations are based on robust anomalies, which appear in the different inversions for P-and S-waves. The resolution is variable through our study volume and has been analyzed through different theoretical test inversions. High-velocity anomalies are observed in the western portion of the Sao Francisco Craton, supporting the hypothesis that this Craton was part of a major Neoproterozoic plate (San Franciscan Plate). Low-velocity anomalies beneath the Tocantins Province (mainly fold belts between the Amazon and Sao Francisco Cratons) are interpreted as due to lithospheric thinning, which is consistent with the good correlation between intraplate seismicity and low-velocity anomalies in this region. Our results show that the basement of the Parana Basin is formed by several blocks, separated by suture zones, according to model of Milani & Ramos. The slab of the Nazca Plate can be observed as a high-velocity anomaly beneath the Parana Basin, between the depths of 700 and 1200 km. Further, we confirm the low-velocity anomaly in the NE area of the Parana Basin which has been interpreted by VanDecar et al. as a fossil conduct of the Tristan da Cunha Plume related to the Parana flood basalt eruptions during the opening of the South Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Rio de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Rio de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today`s coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-So Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frio Terrane into the Goias magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Rio de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane-the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Rio de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe climate changes culminating in at least three major glacial events have been recognized in the Neoproterozoic sedimentary record from many parts of the world Supportive to the global nature of these climatic shifts a considerable amount of data have been acquired from deposits exposed in Pan-African orogenic belts in southwestern and western Africa By comparison published data from the Pan-African belts in Central Africa are scarce We report here evidence of possibly two glacial events recorded in the Mintom Formation that is located on the margin of the Pan-African orogenic Yaounde belt in South-East Cameroon In the absence of reliable radiometric data only maximum and minimum age limits of 640 and 580 Ma respectively can at present be applied to the Mintom Formation The formation consists of two lithostratigraphic ensembles each subdivided in two members (i e in ascending stratigraphic order the Kol Metou Momibole and Atog Adjap Members) The basal ensemble exhibits a typical glacial to post-glacial succession It includes diamictites comprising cobbles and boulders in a massive argillaceous siltstone matrix and laminated siltstones followed by in sharp contact a 2 m-thick massive dolostone that yielded negative delta(13)C values (<-3 parts per thousand. V-PDB) similar to those reported for Marinoan cap carbonates elsewhere However uncertainty remains regarding the glacial influence on the siliciclastic facies because the diamictite is better explained as a mass-flow deposit and diagnostic features such as dropstones have not been seen in the overlying siltstones The Mintom Formation may thus provide an example of an unusual succession of non-glacial diamictite overlain by a truly glacial melt-related cap-carbonate We also report the recent discovery of ice-striated pavements on the structural surface cut in the Mintom Formation suggesting that glaciers developed after the latter had been deposited and deformed during the Pan-African orogeny Striations which consistently exhibit two principal orientations (N60 and N110) were identified in two different localities in the west of the study area on siltstones of the Kol Member and in the east on limestones of the Atog Adjap Member respectively N60-oriented striae indicate ice flow towards the WSW Assigning an age to these features remains problematical because they were not found associated with glaciogenic deposits Two hypotheses can equally be envisaged e either the striated surfaces are correlated (1) to the Gaskiers (or Neoproterozoic post-Gaskiers) glaciation and represent the youngest Ediacaran glacial event documented in the southern Yaounde belt or (2) to the Late Ordovician Hirnantian (Saharan) glaciation thereby providing new data about Hirnantian ice flows in Central Africa (C) 2010 Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Major Gercino Shear Zone is one of the NE-SW lineaments that separate the Neoproterozoic Dom Feliciano Belt, of Brazil and Uruguay, into two different domains: a northwestern supracrustal domain from a southeastern granitoid domain. The shear zone, striking NE, is composed of protomylonites to ultramylonites with mainly dextral kinematic indicators. In Santa Catarina State, southern Brazil, the shear zone is composed of two mylonite belts. The mylonites have mineral orientations produced under greenschist fades conditions at a high strain rate. Strong flattening and coaxial deformation indicate the transpressive character, while the role of pure shear is emphasized by the orientation of the mylonite belts in relation to the inferred stress field component. The quartz microstructures point out that different dynamic recrystallization regimes and crystal plasticity were the dominant mechanisms of deformation during the mylonitization process. Additionally, the fabrics suggest that the glide systems are activated for deformation conditions compatible with the metamorphism in the middle greenschist facies. Elongated granitoid intrusions belonging to two petrographically, geochemically and isotopically distinct rock associations occur between the two mylonite belts. The structures observed in the granites result from a deformation range from magmatic to solid-state conditions points to a continuum of magma straining during and just after its crystallization. Conventional U-Pb analysis of multi-crystal zircon fractions yielded essentially identical ages of 609 +/- 16 Ma and 614 +/- 2 Ma for the two granitic associations, and constrain the transpressive phase of the shear zone. K-Ar ages of biotites between 585 and 560 Ma record the slow cooling and uplift of the intrusions. Some K-Ar ages of micas in regional mylonites are similar, suggesting that thermo-tectonic activity was intense up to this time, probably related to the agglutination of the granite belt to the supracrustal belt NW of the MGSZ. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province in northeastern South America is a typical Brasiliano-Pan-African branching system of Neoproterozoic orogens that forms part of the Western Gondwana assembly. The province is positioned between the Sao Luis-West Africa craton to the north and the Sao Francisco (Congo-Kasai) craton to the south. For this province the main characteristics are (a) its subdivision into five major tectonic domains, bounded mostly by long shear zones, as follows: Medio Coreau, Ceara Central, Rio Grande do Norte, Transversal, and Southern; (b) the alternation of supracrustal belts with reworked basement inliers (Archean nuclei + Paleoproterozoic belts); and (c) the diversity of granitic plutonism, from Neoproterozoic to Early Cambrian ages, that affect supracrustal rocks as well as basement inliers. Recently, orogenic rock assemblages of early Tonian (1000-920 Ma) orogenic evolution have been recognized, which are restricted to the Transversal and Southern domains of the Province. Within the Transversal Zone, the Alto Pajeu terrane locally includes some remnants of oceanic crust along with island arc and continental arc rock assemblages, but the dominant supracrustal rocks are mature and immature pelitic metasedimentary and metavolcaniclastic rocks. Contiguous and parallel to the Alto Pajeu terrane, the Riacho Gravata subterrane consists mainly of low-grade metamorphic successions of metarhythmites, some of which are clearly turbiditic in origin, metaconglomerates, and sporadic marbles, along with interbedded metarhyolitic and metadacitic volcanic or metavolcaniclastic rocks. Both terrane and subterrane are cut by syn-contractional intrusive sheets of dominantly peraluminous high-K calc-alkaline, granititic to granodioritic metaplutonic rocks. The geochemical patterns of both supracrustal and intrusive rocks show similarities with associations of mature continental arc volcano-sedimentary sequences, but some subordinate intra-plate characteristics are also found. In both the Alto Pajeu and Riacho Gravata terranes, TIMS and SHRIMP U-Pb isotopic data from zircons from both metavolcanic and metaplutonic rocks yield ages between 1.0 and 0.92 Ga, which define the time span for an event of orogenic character, the Cariris Velhos event. Less extensive occurrences of rocks of Cariris Velhos age are recognized mainly in the southernmost domains of the Province, as for example in the Polo Redondo-Maranco terrane, where arc-affinity migmatite-granitic and meta-volcano-sedimentary rocks show U-Pb ages (SHRIMP data) around 0.98-0.97 Ga. For all these domains, Sm-Nd data exhibit Tom model ages between 1.9 and 1.1 Ga with corresponding slightly negative to slightly positive epsilon(Nd)(t) values. These domains, along with the Borborema Province as a whole, were significantly affected by tectonic and magmatic events of the Brasiliano Cycle (0.7-0.5 Ga), so that it is possible that there are some other early Tonian rock assemblages which were completely masked and hidden by these later Brasiliano events. Cariris Velhos processes are younger than the majority of orogenic systems at the end of Mesoproterozoic Era and beginning of Neoproterozoic throughout the world, e.g. Irumide belt, Kibaride belt and Namaqua-Natal belt, and considerably younger than those of the youngest orogenic process (Ottawan) in the Grenvillian System. Therefore, they were probably not associated with the proposed assembly of Rodinia. We suggest, instead, that Cariris Velhos magmatism and tectonism could have been related to a continental margin magmatic arc, with possible back-arc associations, and that this margin may have been a short-lived (<100 m.y.) leading edge of the newly assembled Rodinia supercontinent. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sunsas-Aguapei province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsas orogens. The Sunsas orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwestern most of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsas and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilandia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Parana shear zone network (1.18-1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca-Aguapei basin (1.17-1.15 Ga). The Sunsas belt is comprised by the metamorphosed Sunsas and Vibosi sequences, the Rincon del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield epsilon(Nd(t)) signatures (-0.5 to -4.5) and geochemistry (S,1, A-types) suggesting their origin associated with a continental arc setting. The Sunsas belt evolution is marked by ""tectonic fronts"" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paragua microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapei flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsas dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilandia belt (1.13-1.00 Ga). Conversely, the Aguapei aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsas orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Parana shear zone event and the Sunsas belt, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province, in the NE of Brazil, is a rather complex piece in the Brazil-Africa puzzle as it represents the junction of the Dahomeyide/Pharusian, Central African, Aracuai and Brasilia fold belts located between the West-African/Sao Luis, Congo/Sao Francisco and Amazonas craton. The correlation between the Dahomeyides from W-Africa (Ghana, Benin, Togo, and Mali) and the Borborema Province involves the Medio Coreau and Central Ceara domains. The inferred continuation of the main oceanic suture zone exposed in the Dahomeyides of W Africa is buried beneath the Phanerozoic Parnaiba Basin in Brazil (northwest of the Medio Coreau domain) where some high density gravity anomalies may represent hidden remnants of an oceanic suture. In addition to this major suture a narrow, nearly continuous strip composed of mainly mafic pods containing relics of eclogite-facies assemblages associated with partially migmatized granulite-facies metapelitic gneisses has been found further east in the NW Borborema Province. These high pressure mafic rocks, interpreted as retrograded eclogites, are located between the Transbrasiliano Lineament and the Santa Quiteria continental arc and comprise primitive to evolved arc-related rocks with either arc- or MORB-type imprints that can indicate either deep subduction of oceanic lithosphere or roots of continental and oceanic magmatic arcs. Average peak P-T conditions under eclogite-facies metamorphism (T=770 degrees C and P = 17.3 kbar) were estimated using garnet-clinopyroxene thermometry and Jd content in clinopyroxene. Transition to granulite-facies conditions, as well as later widespread re-equilibration under amphibolite facies, were registered both in the basic and the metapelitic rocks and suggest a clockwise P-T path characterized by an increase in temperature followed by strong decompression. A phenomenon possibly related to the exhumation of a highly thickened crust associated with the suturing of the Medio Coreau and Central Ceara domains, two distinct crustal blocks separated by the Transbrasiliano Lineament. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and Jos, Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Rio de La Plata Craton were in their present positions by ca. 535 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Serrinha magmatic suite (Mineiro belt) crops out in the southern edge of the Sao Francisco craton, comprising the Brito quartz-diorite, Brumado de Cima and Brumado de Baixo granodiorites, granophyres and felsic sub-volcanic and volcanic rocks, part of which intruded into the Nazareno greenstone belt. The suite rocks have petrographic features that are consistent with magma supercooling due to the low water content combined with volatile loss, leading to crystallization of quartz and alkaline feldspar at the rims of plagioclase phenocrysts (granophyric intergrowth). The investigated rocks are sub-alkaline, calc-alkaline and show low content in rare earth elements. The U-Pb zircon crystallization ages for the Brumado de Cima granodiorite [2227 +/- 22 (23) Ma] and a coeval granophyre [2211 +/- 22 (23) Ma], coupled with available single-zircon Pb evaporation ages for the Brito and Brumado de Baixo plutons, are significantly older than the ""Minas orogeny"" (ca. 2100-2050 Ga) of Quadrilatero Ferrifero area, eastward from the Serrinha suite. Our data establish an early Rhyacian event tectonically linked with the evolution of the Mineiro belt. The bulk Nd isotopic signature [low negative to positive epsilon(Nd(t)) values] of the Serrinha samples are consistent with the important role of Paleoproterozoic mantle components in the magma genesis. The integrated geologic, geochemical and isotopic information suggests that Paleoproterozoic evolution of the Mineiro belt initiated in a passive continental margin basin with deposition of the Minas Supergroup at ca. 2500 Ma. This stage was succeeded by outboard rupture of the oceanic lithosphere with development and coalescence of progressively younger magmatic arcs during Rhyacian time. One of the earliest arcs formed the Serrinha suite. The tectonic collage of the Serrinha and Ritapolis (2190-2120 Ma) arcs produced the NE-SW Lenheiro shear zone, resulting in mylonitization and recrystallization of both the granitoid intrusions and host rocks. As a matter of fact juxtaposition of distinct magmatic units in age and origin took place along the Lenheiros structure in this sector of the Mineiro belt. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mako bimodal volcanic belt of the Kedougou-Kenieba inlier is composed of volcanic basalts and peridotites interbedded by quartzites and limestones intruded by different generations of granitoids. The early volcanic episode of the belt is constituted of submarine basalts with peridotite similar to those of the oceanic abyssal plains. It is intruded by the Badon Kakadian TTG-granitic batholite dated around 2200 Ma. The second volcanic phase is constituted of basaltic, andesitic, and felsitic flows exhibit structures of aerial volcanic rocks. It is intruded by granites dated between 2160 and 2070 Ma. The general pattern of trace element variation of submarine volcanic rocks is consistent with those of basalts from oceanic plateaus which are the modern equivalent of the Archean greenstones belts. The Nd and Sr isotopic systematics typical of juvenile material indicates that the source of these igneous rocks is derived from a depleted mantle source. These results are consistent with the idea of a major accretion within the West African Craton occurring at about 2.1 Ga and corresponding to an important process of mantle-oceanic lithosphere differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the extensive regions of Proterozoic accretionary belts that either formed most of the Amazonian Craton, or are marginal to its southeastern border. Their overall geodynamic significance is considered taking into account the paleogeographic reconstruction of Columbia, Rodinia and Gondwana. Amazonia would be part of Columbia together With Laurentia, North China and Baltica, forming a continuous, continental landmass linked by the Paleo- to Mesoproterozoic mobile belts that constitute large portions of it. The Rodinia supercontinent was formed in the Mesoproterozoic by the agglutination of the existing cratonic fragments, such as Laurentia and Amazonia, during contemporary continental collisions worldwide. The available paleomagnetic data suggest that Laurentia and Amazonia remained attached until at least 600 Ma. Since all other cratonic units Surrounding Laurentia have already rifted away by that time, the separation between Amazonia and Laurentia marks the final break-up of Rodinia with the opening of the lapetus ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.