4 resultados para Gordon Rule

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the QCD sum rules to evaluate the mass of a possible scalar mesonic state that couples to a molecular D(s)*(D) over bar (s)* current. We find a mass m(Ds)*(Ds)* = (4.14 +/- 0.09) GeV, which is in an excellent agreement with the recently observed Y(4140) charmonium state. We consider the contributions of condensates up to dimension-eight, we work at leading order in alpha(s) and we keep terms which are linear in the strange quark mass m(s). We also consider a molecular D*(D) over bar* current and we obtain m m(D)*(D)* = (4.13 +/- 0.10), around 200 MeV above the mass of the Y(3930) charmonium state. We conclude that it is possible to describe the Y(4140) structure as a D(s)*(D) over bar (s)* molecular state or even as a mixture of D(s)*(D) over bar (s)* and D*(D) over bar* molecular states. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical properties of a two-dimensional ideal dispersion of polydisperse micelles are derived by analyzing the convergence properties of a sum rule set by mass conservation. Internal micellar degrees of freedom are accounted for by a microscopic model describing small displacements of the constituting amphiphiles with respect to their equilibrium positions. The transfer matrix (TM) method is employed to compute internal micelle partition function. We show that the conditions under which the sum rule is saturated by the largest eigenvalue of the TM determine the value of amphiphile concentration above which the dispersion becomes highly polydisperse and micelle sizes approach a Schultz distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and <(A)over bar>) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009 Elsevier B.V. All rights reserved.