176 resultados para Glutathione S-transferase theta (GSTT1)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Null genotypes of glutathione S-transferase (GSTs) exhibit absence of enzymatic activity and are hypothesized to modulate an increased risk of developing cardiovascular disease. The aim of this study was to identify the potential association between GSTM1 and GSTT1 deleted polymorphisms with cardiovascular risk factors and coronary atherosclerosis in two independent urban populations. Methods and results: Genotype distribution of GSTM1 and GSTT1 deleted polymorphism were examined in a sample of 1577 individuals from the general population and a replication sample of 871 individuals submitted to coronary angiography. Triglycerides, HDL-cholesterol and the triglycerides/HDL ratio were significantly associated with a double-deleted genotype in individuals from the general population. These findings were replicated in a second, independent, population of individuals submitted to coronary angiography. In addition, coronary artery disease severity was also associated with GSTs genotypes and the risk conferred from GSTs genotype was mainly due to triglycerides/HDL ratio information. Conclusions: The data suggest that the presence of a double deletion genotypes of the GSTM1 and GSTT1 genes is associated with hypertriglyceridemia and low HDL-cholesterol levels in humans. These novel findings may provide a new unexplored link between lipid metabolism and GST homeostasis. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 angstrom, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 angstrom resolution on a rotating-anode X-ray source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutatione S-transferases (GSTs) are a family of enzymes involved in detoxification of xenobiotics. Placental GST, known as GST-P, has been detected in tissues following exposure to carcinogenic agents being regarded a reliable biomarker of exposure and susceptibility in early phases of carcinogenesis. The aim of this study was to investigate the expressivity of GST-P positive foci in the rat tongue mucosa exposed to cigarette smoke by means of immunohistochemistry. A total of twelve male Wistar rats were distributed into two groups: negative control and experimental group exposed to cigarette smoke during 75 days. After experimental period, no histopathological changes in the tongue mucosa were evidenced in the negative control and the experimental group. However, a total of five GST-P positive foci were detected in two out of six animals exposed to cigarrette smoke. None control animals were noticed GST-P positive foci. These data indicate that expression of GST-P may reflect the carcinogenic effect of cigarette smoke as well as the genetic susceptibility of animals in relation to continuous carcinogens exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione S-transferase (GST) is a family of enzymes involved in the detoxification of electrophilic compounds. Different classes of GST are expressed in various organs, such as liver, lungs, stomach and others. Expression of GST can be modulated by diet components and plant-derived compounds. The importance of controlling GST expression is twofold: increasing levels of GST are beneficial to prevent deleterious effects of toxic and carcinogenic compounds, while inhibition of GST in tumor cells may help overcoming tumor resistance to chemotherapy. A screening of 16 plants used in the Brazilian pharmacopoeia tested their effects on GST expression in hepatocytes and Jurkat (leukemia) T-cells. The methanol extracts of five plants inhibited GST expression in hepatocytes. Three plants significantly inhibited and four others induced GST expression in Jurkat cells. Among these, the extracts of Bauhinia forficata Link. (Leguminosae) and Cecropia pachystachya Trec. (Urticaceae) inhibited GST expression at relatively low concentrations. With the exception of B. forficata, all plants were cytotoxic when administered to Jurkat cells at high doses (1 mg/mL) and some extracts were considerably cytotoxic even at lower concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25,15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mLL(-1)) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill`s catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde. MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mLL(-1) diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mLL(-1) diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane yield and quality are affected by a number of biotic and abiotic stresses. In response to such stresses, plants may increase the activities of some enzymes such as glutathione transferase (GST), which are involved in the detoxification of xenobiotics. Thus, a sugarcane GST was modelled and molecular docked using the program LIGIN to investigate the contributions of the active site residues towards the binding of reduced glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). As a result, W13 and I119 were identified as key residues for the specificity of sugarcane GSTF1 (SoGSTF1) towards CDNB. To obtain a better understanding of the catalytic specificity of sugarcane GST (SoGSTF1), two mutants were designed, W13L and I119F. Tertiary structure models and the same docking procedure were performed to explain the interactions between sugarcane GSTs with GSH and CDNB. An electron-sharing network for GSH interaction was also proposed. The SoGSTF1 and the mutated gene constructions were cloned and expressed in Escherichia coli and the expressed protein purified. Kinetic analyses revealed different Km values not only for CDNB, but also for GSH. The Km values were 0.2, 1.3 and 0.3 mM for GSH, and 0.9, 1.2 and 0.5 mM for CDNB, for the wild type, W13L mutant and I119F mutant, respectively. The V(max) values were 297.6, 224.5 and 171.8 mu mol min(-1) mg(-1) protein for GSH, and 372.3, 170.6 and 160.4 mu mol min(-1) mg(-1) protein for CDNB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head and neck squamous cell carcinoma (HNSCC) is associated with environmental factors, especially tobacco and alcohol consumption. Most of the carcinogens present in tobacco smoke are converted into DNA-reactive metabolites by cytochrome P450 (CYPs) enzymes and detoxification of these substances is performed by glutathione S-transferases (GSTs). It has been suggested that genetic alterations, such as polymorphisms, play an important role in tumorigenesis and HNSCC progression. The aim of this study was to investigate CYP1A1, CYP1A2, CYP2E1, GSTM1, and GSTT1 polymorphisms as risk factors in HNSCC and their association with clinicopathologic data. The patients comprised 153 individuals with HNSCC (cases) and 145 with no current or previous diagnosis of cancer (controls). Genotyping of the single nucleotide polymorphisms (SNPs) of the CYP1A1, CYP1A2, and CYP2E1 genes was performed by PCR-RFLP and the GSTM1 and GSTT1 copy number polymorphisms (CNPs) were analyzed by PCR-multiplex. As expected, a significant difference was detected for tobacco and alcohol consumption between cases and controls (P < 0.001). It was observed that the CYP1A2*1D (OR = 16.24) variant and GSTM1 null alleles (OR = 0.02) confer increased risk of HNSCC development (P < 0.001). In addition, head and neck cancer alcohol consumers were more frequently associated with the CYP2E1*5B variant allele than control alcohol users (P < 0.0001, OR = 190.6). The CYP1A2*1C polymorphism was associated with tumor recurrence (log-rank test, P = 0.0161). The CYP2E1*5B and GSTM1 null alleles were significantly associated with advanced clinical stages (T3 + T4; P = 0.022 and P = 0.028, respectively). Overall, the findings suggested that the genetic polymorphisms studied are predictors of risk and are also associated with tumor recurrence, since they are important for determining the parameters associated with tumor progression and poor outcomes in HNSCC. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aim: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. Subjects and methods: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Delta(GJB6- D13S1830), Delta(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. Results: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. Conclusion: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) constitute a superfamily of ubiquitous multifunctional enzymes that are involved in the cellular detoxification of a large number of endogenous and exogenous chemical agents that have electrophilic functional groups. People who have deficiencies in this family of genes are at increased risk of developing some types of tumors. We examined GSTP1 Ile105Val polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the Val allele of the GSTP1 Ile105Val polymorphism had an increased risk of tumor development (odds ratio = 8.60; 95% confidence interval = 4.74-17.87; P < 0.001). Overall survival of patients did not differ significantly. We suggest that GSTP1 Ile105Val polymorphisms are involved in susceptibility to developing astrocytomas and glioblastomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at evaluating biomarkers, individual and population responses in the native Chironomus xanthus to assess the toxicity of pesticide-contaminated sediments from the Monjolinho River (Southeast Brazil). We measured cholinesterase (ChE) and glutathione S-transferase activities (GST), as biomarkers and survival, individual growth and adult emergence, as individual performances. There was no response of the ChE activity and a tendency to decreased GST activity in contaminated sites, but this was generally not statistically significant. Therefore, there was no association of the biomarker responses with exposure to sediment containing pesticides. In contrast, ash free dry mass was significantly increased and male emergence was decreased in C. xanthus exposed to the same sediments. In conclusion, the selected biomarkers were not sensitive and specific enough to detect and anticipate effects of pesticide contamination at the levels measured in the study area. Nevertheless, individual performances alterations pointed to potential pollution problems and possible ecological consequences. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron (Fe) is an essential nutrient for plants, but it can generate oxidative stress at high concentrations. In this study, Coffea arabica L. cell suspension cultures were exposed to excess Fe (60 and 240 mu M) to investigate changes in the gene expression of ferritin and antioxidant enzymes. Iron content accumulated during cell growth, and Western blot analysis showed an increase of ferritin in cells treated with Fe. The expression of two ferritin genes retrieved from the Brazilian coffee EST database was studied. CaFER1, but not CaFER2, transcripts were induced by Fe exposure. Phylogenetic analysis revealed that CaFER1 is not similar to CaFER2 or to any ferritin that has been characterised in detail. The increase in ferritin gene expression was accompanied by an increase in the activity of antioxidant enzymes. Superoxide dismutase, guaiacol peroxidase, catalase, and glutathione reductase activities increased in cells grown in the presence of excess Fe, especially at 60 mu M, while the activity of glutathione S-transferase decreased. These data suggest that Fe induces oxidative stress in coffee cell suspension cultures and that ferritin participates in the antioxidant system to protect cells against oxidative damage. Thus, cellular Fe concentrations must be finely regulated to avoid cellular damage most likely caused by increased oxidative stress induced by Fe. However, transcriptional analyses indicate that ferritin genes are differentially controlled, as only CaFER1 expression was responsive to Fe treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Recent studies support an important role for human papillomavirus (HPV) in a subgroup of head and neck squamous cell carcinomas (HNSCC). We have evaluated the HPV deoxyribonucleic acid (DNA) prevalence as well as the association between serological response to HPV infection and HNSCC in two distinct populations from Central Europe (CE) and Latin America (LA). Methods Cases (n = 2214) and controls (n = 3319) were recruited from 1998 to 2003, using a similar protocol including questionnaire and blood sample collection. Tumour DNA from 196 fresh tissue biopsies was analysed for multiple HPV types followed by an HPV type-specific polymerase chain reaction (PCR) protocol towards the E7 gene from HPV 16. Using multiplex serology, serum samples were analysed for antibodies to 17 HPV types. Statistical analysis included the estimation of adjusted odds ratios (ORs) and the respective 95% confidence intervals (CIs). Results HPV16 E7 DNA prevalence among cases was 3.1% (6/196), including 4.4% in the oropharynx (3/68), 3.8% in the hypopharynx/larynx (3/78) and 0% among 50 cases of oral cavity carcinomas. Positivity for both HPV16 E6 and E7 antibodies was associated with a very high risk of oropharyngeal cancer (OR = 179, 95% CI 35.8-899) and hypopharyngeal/laryngeal cancer (OR = 14.9, 95% CI 2.92-76.1). Conclusions A very low prevalence of HPV DNA and serum antibodies was observed among cases in both CE and LA. The proportion of head and neck cancer caused by HPV may vary substantially between different geographical regions and studies that are designed to evaluate the impact of HPV vaccination on HNSCC need to consider this heterogeneity.