8 resultados para Geology, Stratigraphic -- Ordovician

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biogeography of the Glandulocaudinae ( former Glandulocaudini) is reviewed. The major pattern of diversification presented by this group of freshwater fishes can be clearly associated to the main aspects of the tectonic evolution of the southern portion of the Cis-Andean South American Platform. The phylogenetic relationships within the group suggest that the clade represented by Lophiobrycon is the sister-group of the more derived clade represented by the genus Glandulocauda and Mimagoniates. Lophiobrycon and Glandulocauda occur in areas of the ancient crystalline shield of southeastern Brazil and their present allopatric distribution is probably due to relict survival and tectonic vicariant events. Populations of Glandulocauda melanogenys are found in contiguous drainages in presently isolated upper parts of the Tiete, Guaratuba, Itatinga, and Ribeira de Iguape basins and this pattern of distribution is probably the result of river capture caused by tectonic processes that affected a large area in eastern and southeastern Brazil. The species of Mimagoniates are predominantly distributed along the eastern and southeastern coastal areas, but M. microlepis is additionally found in the rio Iguacu and Tibagi basins. Mimagoniates barberi occurs in both SW margin of the upper rio Parana basin and the lower Paraguay and Mimagoniates sp. occurs in the upper Paraguay river basin. Tectonic activations of the Continental Rift of Southeastern Brazil along the eastern margin of the Upper Parana basin promoted population fragmentation responsible of the present day distribution presented by Glandulocauda melanogenys. We hypothesize that occurrence of Mimagoniates along the lowland area around the Parana basin was due to a single or a multiple fragmentation of populations along the W-SW border of the upper Parana Basin, probably due to the major tectonic origin of the Chaco-Pantanal wetland foreland basins since the Miocene as well as Cenozoic tectonic activity along the borders of the upper Parana basin, such as in the eastern Paraguay, in the Asuncion Rift. Distributional pattern of Mimagoniates suggests that its initial diversification may be related to the tectonic evolution of the Chaco-Pantanal foreland basin system and a minimum age of 2.5 M.Y are proposed for this monophyletic group. Previous hypotheses on sea level fluctuations of the late Quaternary as being the main causal mechanism promoting cladogenesis and speciation of the group are critically reviewed. Phylogeographic studies based on molecular data indicate significant differences among the isolated populations of M. microlepis. These findings suggest that a much longer period of time and a paleogeographic landscape configuration of the Brazilian southeastern coastal region explain the present observed phylogenetic and biogeographic patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe climate changes culminating in at least three major glacial events have been recognized in the Neoproterozoic sedimentary record from many parts of the world Supportive to the global nature of these climatic shifts a considerable amount of data have been acquired from deposits exposed in Pan-African orogenic belts in southwestern and western Africa By comparison published data from the Pan-African belts in Central Africa are scarce We report here evidence of possibly two glacial events recorded in the Mintom Formation that is located on the margin of the Pan-African orogenic Yaounde belt in South-East Cameroon In the absence of reliable radiometric data only maximum and minimum age limits of 640 and 580 Ma respectively can at present be applied to the Mintom Formation The formation consists of two lithostratigraphic ensembles each subdivided in two members (i e in ascending stratigraphic order the Kol Metou Momibole and Atog Adjap Members) The basal ensemble exhibits a typical glacial to post-glacial succession It includes diamictites comprising cobbles and boulders in a massive argillaceous siltstone matrix and laminated siltstones followed by in sharp contact a 2 m-thick massive dolostone that yielded negative delta(13)C values (<-3 parts per thousand. V-PDB) similar to those reported for Marinoan cap carbonates elsewhere However uncertainty remains regarding the glacial influence on the siliciclastic facies because the diamictite is better explained as a mass-flow deposit and diagnostic features such as dropstones have not been seen in the overlying siltstones The Mintom Formation may thus provide an example of an unusual succession of non-glacial diamictite overlain by a truly glacial melt-related cap-carbonate We also report the recent discovery of ice-striated pavements on the structural surface cut in the Mintom Formation suggesting that glaciers developed after the latter had been deposited and deformed during the Pan-African orogeny Striations which consistently exhibit two principal orientations (N60 and N110) were identified in two different localities in the west of the study area on siltstones of the Kol Member and in the east on limestones of the Atog Adjap Member respectively N60-oriented striae indicate ice flow towards the WSW Assigning an age to these features remains problematical because they were not found associated with glaciogenic deposits Two hypotheses can equally be envisaged e either the striated surfaces are correlated (1) to the Gaskiers (or Neoproterozoic post-Gaskiers) glaciation and represent the youngest Ediacaran glacial event documented in the southern Yaounde belt or (2) to the Late Ordovician Hirnantian (Saharan) glaciation thereby providing new data about Hirnantian ice flows in Central Africa (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stratigraphic intervals characterized by varied and complex styles of soft-sediment deformation structures are well preserved in Miocene and Late Pleistocene to Holocene deposits of a sedimentary basin located in Northeastern Brazil. The Miocene strata, represented by the Barreiras Formation, record only brittle structures, including numerous faults and fractures with straight and high angle-dipping planes that are often filled with sands derived from overlying beds. Folds consisting of broad anticlines and synclines are also present in this unit. The late Pleistocene to Holocene deposits, named Post-Barreiras Sediments, contain an indurated sandy package with a large variety of ductile and brittle deformation structures (i.e., massive sandstones with isolated sand fragments and breccias, undulatory strata, sand dykes and diapirs, sinks and bowls, pebbly pockets, plunged sediment mixtures, fitted sand masses, cone-shaped cracks, fault grading and sedimentary enclaves). These features, confined to sharp-based stratigraphic horizons that progressively grade downward into undisturbed deposits, are related to seismic shocks of high surface-wave magnitude (i.e., Ms>5 or 6). Amalgamated seismites suggest that previously formed seismites were affected by subsequent seismic-wave propagation. Seismic waves caused by activity along one, or most likely, several tectonic structures would have propagated throughout the depositional environment, producing laterally extensive seismites. The close proximity to earthquake epicenters would have promoted pervasive re-sedimentation due to pore overpressure, resulting high volumes of massive sandstones and breccia. The similarity between deposits with correlatable strata from many other areas along the Brazilian coast allows raise the hypothesis that the seismic episodes might have affected sedimentation patterns in a large (i.e., extension of several hundreds of kilometers) geographic area. Thus, the modern seismicity recorded along Northeastern Brazil was recurrent during the Quaternary and, perhaps, also in the Pliocene. The estimated high magnitude of the seismic events and the great regional extent of the affected area demonstrate that the Brazilian coast experienced tectonic stress through the last geological episodes of its evolution, which would have favored sediment accumulation and penecontemporaneous re-sedimentation. This geological context is unexpected in a passive margin, inducing to revisit the debate on how active is a passive margin. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most existing models for the evolution of rift basins predict the development of deep-water depositional systems during the stage of greatest tectonic subsidence, when accommodation generation potentially outpaces sedimentation. Despite this, some rift basins do not present deep-water systems, instead being dominated by subaerial deposits. This paper focuses on one of these particular rift basins, the Cambrian Guaritas Rift, Southern Brazil, characterized by more than 1500 m of alluvial and aeolian strata deposited in a 50-km-wide basin. The deposits of the Guaritas Rift can be ascribed to four depositional systems: basin-border alluvial fans, bedload-dominated ephemeral rivers, mixed-load ephemeral rivers and aeolian dune fields. These four systems are in part coeval and in part succeed each other, forming three stages of basin evolution: (i) Rift Initiation to Early Rift Climax stage, (ii) Mid to Late Rift Climax stage, and (iii) Early Post-Rift stage. The first stage comprises most of the Guaritas Group and is characterized by homogeneous bed-load-dominated river deposits, which do not clearly record the evolution of subsidence rates. The onset of sedimentation of finer-grained deposits occurred as a consequence of a reactivation event that changed the outline of the basin and the distribution of the nearby highlands. This strongly suggests that the capture of the main river system to another depression decreased the sediment supply to the basin. The study of the Guaritas Rift indicates that rift basins in which the sediment supply exceeds the accommodation generation occur as a consequence of moderate subsidence combined with the capture of a major river system to the basin during the initial stages of basin evolution. In these basins, changes in the average discharge of the river system or tectonic modification of the drainage network may be the major control on the stratigraphic architecture. (c) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratigraphic subdivision and correlation of dune deposits is difficult, especially when age datings are not available. A better understanding of the controls on texture and composition of eolian sands is necessary to interpret ancient eolian sediments. The Imbituba-Jaguaruna coastal zone (Southern Brazil, 28 degrees-29 degrees S) stands out due to its four well-preserved Late Pleistocene (eolian generation 1) to Holocene eolian units (eolian generations 2, 3, and 4). In this study, we evaluate the grain-size and heavy-mineral characteristics of the Imbituba-Jaguartma eolian units through statistical analysis of hundreds of sediment samples. Grain-size parameters and heavy-mineral content allow us to distinguish the Pleistocene from the Holocene units. The grain size displays a pattern of fining and better sorting from generation 1 (older) to 4 (younger), whereas the content of mechanically stable (dense and hard) heavy minerals decreases from eolian generation 1 to 4. The variation in grain size and heavy-mineral content records shifts in the origin and balance (input versus output) of eolian sediment supply attributable mainly to relative sea-level changes. Dunefields submitted to relative sea-level lowstand conditions (eolian generation 1) are characterized by lower accumulation rates and intense post-depositional dissection by fluvial incision. Low accumulation rates favor deflation in the eolian system, which promotes concentration of denser and stable heavy minerals (increase of ZTR index) as well as coarsening of eolian sands. Dissection involves the selective removal of finer sediments and less dense heavy minerals to the coastal source area. Under a high rate of relative sea-level rise and transgression (eolian generation 2), coastal erosion prevents deflation through high input of sediments to the coastal eolian source. This condition favors dunefield growth. Coastal erosion feeds sand from local sources to the eolian system. including sands from previous dunefields (eolian generation 1) and from drowned incised valleys. Therefore, dunefields corresponding to transgressive phases inherit the grain-size and heavy-mineral characteristics of previous dunefields, leading to selective enrichment of finer sands and lighter minerals. Eolian generations 3 and 4 developed during a regressive-progradational phase (Holocene relative sea level highstand). The high rate of sediment supply during the highstand phase prevents deflation. The lack of coastal erosion favors sediment supply from distal sources (fluvial sediments rich in unstable heavy minerals). Thus, dunefields of transgressive and highstand systems tracts may be distinguished from dunefields of the lowstand systems tract through high rates of accumulation (low deflation) in the former. The sediment source of the transgressive dunefields (high input of previously deposited coastal sands) differs from that of the highstand dunefields (high input of fluvial distal sands). Based on this case study, we propose a general framework for the relation between relative sea level, sediment supply and the texture and mineralogy of eolian sediments deposited in siliciclastic wet coastal zones similar to the Imbituba-Jaguaruna coast (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of geological mapping, chemical analysis and radiometric dating of metabasic rocks of Betara Formation, and mapping and dating of those present in the Betara basement nucleus together with mylonitic granodiorite and syenogranite are reported here. U-Pb analysis of bulk zircon fractions from the metabasic rocks of the basement nucleus yielded a Statherian age of 1790 +/- 22 Ma, while the metabasic rocks from the upper part of the Betara Formation yielded a Calymmian age between 1500 and 1450 Ma. This age is a minimum for the deposition of the Betara Formation. The older metabasic rocks are associated with post-tectonic, possibly anorogenic syenogranite, while the younger ones are gabbro or very porphyritic ankaramite whose REE patterns are consistent with crystallization from an N-MORB parent magma. The observations and data point to the probable events associated with extensional processes of the end of Paleoproterozoic and early Mesoproterozoic. Similar registers of Statherian (1.80-1.75 Ga) and Calymmian (1.50-1.45 Ga) extensional events are recorded in other parts of the South American and African continents. The Neoproterozoic witnessed the formation and junction of the tectonic slices which formed the Apiai domain during the assemblage of western Gondwana. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.