139 resultados para Genes mitocondriais
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
Pimelodidae is one of the most representative of Neotropical catfish families. However, these fish are still poorly studied in terms of cytogenetics, especially regarding the application of more accurate techniques such as the chromosomal localization of ribosomal genes. In the present work, fluorescent in situ hybridization with 5S and 18S rDNA probes was employed for rDNA site mapping in Pimelodus sp., P. fur and P. maculatus from the São Francisco River in the Três Marias municipality - MG. The results from the application of the 18S probe confirmed the previous data obtained by silver nitrate staining, identifying a simple nucleolar organizing region system for these species. However, the labeling results from the 5S rDNA probe demonstrated a difference in the number and localization of these sites between the analyzed species. The obtained data allowed inferences on the possible processes involved in the karyotypic evolution of this genus.
Resumo:
Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.
Resumo:
DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.
Resumo:
Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pattern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited 2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed ribosomal cistrons in an autosomal bivalent.
Resumo:
Aims: To determine the prevalence and expression of metallo-beta-lactamases (MBL)-encoding genes in Aeromonas species recovered from natural water reservoirs in southeastern Brazil. Methods and Results: Eighty-seven Aeromonas isolates belonging to Aeromonas hydrophila (n = 41) and Aer. jandaei (n = 46) species were tested for MBL production by the combined disk test using imipenem and meropenem disks as substrates and EDTA or thioglycolic acid as inhibitors. The presence of MBL genes was investigated by PCR and sequencing using new consensus primer pairs designed in this study. The cphA gene was found in 97.6% and 100% of Aer. hydrophila and Aer. jandaei isolates, respectively, whereas the acquired MBL genes bla(IMP), bla(VIM) and bla(SPM-1) were not detected. On the other hand, production of MBL activity was detectable in 87.8% and 10.9% of the cphA-positive Aer. hydrophila and Aer. jandaei isolates respectively. Conclusions: Our results indicate that cphA seems to be intrinsic in the environmental isolates of Aer. hydrophila and Aer. jandaei in southeastern Brazil, although, based on the combined disk test, not all of them are apparently able to express the enzymatic activity. Significance and Impact of the Study: These data confirm the presence of MBL-producing Aeromonas species in natural water reservoirs. Risk of water-borne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view
Resumo:
Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks. Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology. Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.
Resumo:
Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Resumo:
For obtaining accurate and reliable gene expression results it is essential that quantitative real-time RT-PCR (qRT-PCR) data are normalized with appropriate reference genes. The current exponential increase in postgenomic studies on the honey bee, Apis mellifera, makes the standardization of qRT-PCR results an important task for ongoing community efforts. For this aim we selected four candidate reference genes (actin, ribosomal protein 49, elongation factor 1-alpha, tbp-association factor) and used three software-based approaches (geNorm, BestKeeper and NormFinder) to evaluate the suitability of these genes as endogenous controls. Their expression was examined during honey bee development, in different tissues, and after juvenile hormone exposure. Furthermore, the importance of choosing an appropriate reference gene was investigated for two developmentally regulated target genes. The results led us to consider all four candidate genes as suitable genes for normalization in A. mellifera. However, each condition evaluated in this study revealed a specific set of genes as the most appropriated ones.
Resumo:
Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.
Resumo:
Background -: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. Results -: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. Conclusion -: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.
Resumo:
Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.
Resumo:
In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.
Resumo:
Background: During mating, insect males eject accessory gland proteins (Acps) into the female genital tract. These substances are known to affect female post-mating behavior and physiology. In addition, they may harm the female, e. g., in reducing its lifespan. This is interpreted as a consequence of sexual antagonistic co-evolution. Whereas sexual conflict abounds in non-social species, the peculiar life history of social insects (ants, bees, wasps) with lifelong pair-bonding and no re-mating aligns the reproductive interests of the sexes. Harming the female during mating would negatively affect male fitness and sexual antagonism is therefore not expected. Indeed, mating appears to increase female longevity in at least one ant species. Acps are presumed to play a role in this phenomenon, but the underlying mechanisms are unknown. In this study, we investigated genes, which are preferentially expressed in male accessory glands of the ant Leptothorax gredleri, to determine which proteins might be transferred in the seminal fluid. Results: By a suppression subtractive hybridization protocol we obtained 20 unique sequences (USs). Twelve had mutual best matches with genes predicted for Apis mellifera and Nasonia vitripennis. Functional information (Gene Ontology) was available only for seven of these, including intracellular signaling, energy-dependent transport and metabolic enzyme activities. The remaining eight USs did not match sequences from other species. Six genes were further analyzed by quantitative RT-PCR in three life cycle stages of male ants. A gene with carboxy-lyase activity and one of unpredicted function were significantly overexpressed in accessory glands of sexually mature males. Conclusions: Our study is the first one to investigate differential gene expression in ants in a context related to mating. Our findings indicate that male accessory glands of L. gredleri express a series of genes that are unique to this species, possibly representing novel genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females.