334 resultados para Generated Granule Cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brain mitochondrial ATP-sensitive K+ channel (mito-K-ATP) opening by diazoxide protects against ischemic damage and excitotoxic cell death. Here we studied the redox properties of brain mito-K-ATP. Mito-K-ATP activation during excitotoxicity in cultured cerebellar granule neurons prevented the accumulation of reactive oxygen species (ROS) and cell death. Furthermore, mito-K-ATP activation in isolated brain mitochondria significantly prevented H2O2 release by these organelles but did not change Ca2+ accumulation capacity. Interestingly, the activity of mito-K-ATP was highly dependent on redox state. The thiol reductant mercaptopropionylglycine prevented mito-K-ATP activity, whereas exogenous ROS activated the channel. In addition, the use of mitochondrial substrates that led to higher levels of endogenous mitochondrial ROS release closely correlated with enhanced K+ transport activity through mito-K-ATP. Altogether, our results indicate that brain mito-K-ATP is a redox-sensitive channel that controls mitochondrial ROS release. (c) 2008 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal characteristics of a colony of Apoica flavissima, an epiponine wasp, were examined. The nest, with a diameter of slightly less than 30 cm, was built on a twig of an orange tree. The temperature of the roof surface fluctuated greatly, ranging between 19.1 and 41.5 degrees C. However, the temperature in the central cell was kept constant at around 27 degrees C throughout a day. Although heavy rain pelted the nest roof in the morning, the central cell maintained temperatures higher than 25 degrees C. On the contrary, after all immature and adult wasps were removed the temperature in the nest fluctuated considerably. The presence of immature individuals and adult wasps densely covering the under surface of the comb seemed to function as an effective insulator. The smaller temperature fluctuation in the central cell than on the roof surface, when the nest was in the empty state, suggests that the thick spongy tissue of the roof made from curled plant leaf hairs serves as an insulator to prevent the conduction of solar heat into the cells and the outward flow of heat generated in cells, especially at night.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Photodynamic therapy is mainly used for treatment of malignant lesions, and is based on selective location of a photosensitizer in the tumor tissue, followed by light at wavelengths matching the photosensitizer absorption spectrum. In molecular oxygen presence, reactive oxygen species are generated, inducing cells to die. One of the limitations of photodynamic therapy is the variability of photosensitizer concentration observed in systemically photosensitized tissues, mainly due to differences of the tissue architecture, cell lines, and pharmacokinetics. This study aim was to demonstrate the spatial distribution of a hematoporphyrin derivative, Photogem(R), in the healthy liver tissue of Wistar rats via fluorescence spectroscopy, and to understand its implications on photodynamic response. Methods: Fifteen male Wistar rats were intravenously photosensitized with 1.5 mg/kg body weight of Photogem(R). Laser-induced fluorescence spectroscopy at 532nm-excitation was performed on ex vivo liver slices. The influence of photosensitizer surface distribution detected by fluorescence and the induced depth of necrosis were investigated in five animals. Results: Photosensitizer distribution on rat liver showed to be greatly non-homogeneous. This may affect photodynamic therapy response as shown in the results of depth of necrosis. Conclusions: As a consequence of these results, this study suggests that photosensitizer surface spatial distribution should be taken into account in photodynamic therapy dosimetry, as this will help to better predict clinical results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangara da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangara da Serra region, using Tradescantia pallida as in situ bioindicator. Methods: The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results: The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions: Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Antigens for Hantavirus serological tests have been produced using DNA recombinant technology for more than twenty years. Several different strategies have been used for that purpose. All of them avoid the risks and difficulties involved in multiplying Hantavirus in the laboratory. In Brazil, the Araraquara virus is one of the main causes of Hantavirus Cardio-Pulmonary Syndrome (HCPS). Methods: In this investigation, we report the expression of the N protein of the Araraquara Hantavirus in a Baculovirus Expression System, the use of this protein in IgM and IgG ELISA and comparison with the same antigen generated in E. coli. Results: The protein obtained, and purified in a nickel column, was effectively recognized by antibodies from confirmed HCPS patients. Comparison of the baculovirus generated antigen with the N protein produced in E. coli showed that both were equally effective in terms of sensitivity and specificity. Conclusions: Our results therefore indicate that either of these proteins can be used in serological tests in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymic CD4(+)CD25(+) cells play an important role in immune regulation and are continuously developed in the thymus as an independent lineage. How these cells are generated, what are their multiple pathways of suppressive activity and which are their specific markers are questions that remain unanswered. To identify molecules involved in the function and development of human CD4(+)CD25(+) T regulatory cells we targeted thymic CD4(+)CD25(+) cells by peptide phage display. A phage library containing random peptides was screened ex vivo for binding to human thymic CD4(+)CD25(+) T cells. After four rounds of selection on CD4(+)CD25(+) enriched populations of thymocytes, we sequenced several phage displayed peptides and selected one with identity to the Vitamin D Receptor (VDR). We confirmed the binding of the VDR phage to active Vitamin D in vitro, as well as the higher expression of VDR in CD4(+)CD25(+) cells. We suggest that differential expression of VDR on natural Tregs may be related to the relevance of Vitamin D in function and ontogeny of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survey is aimed at critically reviewing information on the UVA-mediated oxidative reactions to cellular components with emphasis on DNA as the result of mostly photosensitized pathways. It appears clearly that UVA radiation is relatively much more efficient than UVB photons in inducing oxidative processes. The main UVA-induced oxidative degradation pathways of DNA are reported and discussed mechanistically. They are mostly rationalized in terms of a major contribution of singlet molecular oxygen ((1)O(2)) and to a lesser extent of hydroxyl radical ((center dot)OH), that in the latter case originates from Fenton-type reactions. This leads to the predominant formation of 8-oxo-7,8-dihydroguanine together with smaller amounts of oxidized pyrimidine bases and DNA strand breaks in UVA-irradiated cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naive cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a] pyrene (B[alpha] P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 mu M, SB was non-genotoxic, while at a concentration of 200 mu M, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[alpha] P, BLEO and AFB1 in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.