6 resultados para General American (GenAm)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
It describes the main features of SILAT as a multinational scientific and educational program that serves as a tool to analyze and solve the morphological medical terminology problems in Spanish and Portuguese speaking countries of America. It treated history and creation, members, aims and functions, resources, activities, organizational structure, board, relations with other organizations and publications.
Resumo:
This work has investigated the impact of three different low-frequency sea surface temperature (SST) variability modes located in the Indian and the Pacific Oceans on the interannual variability of the South American Monsoon System (SAMS) using observed and numerical data. Rotated Empirical Orthogonal Function (REOF) analysis and numerical simulations with a General Circulation Model (GCM) were used. One of the three SST variability modes is located close to southeastern Africa. According to the composites, warmer waters over this region are associated with enhanced austral summer precipitation over the sub-tropics. The GCM is able to reproduce this anomalous precipitation pattern, simulating a wave train emanating from the Indian Ocean towards South America (SA). A second SST variability mode was located in the western Pacific Ocean. REOF analysis indicates that warmer waters are associated with drought conditions over the South Atlantic Convergence Zone (SACZ) and enhanced precipitation over the sub-tropics. The GCM indicates that the warmer waters over Indonesia generate drought conditions over tropical SA through a Pacific South America-like (PSA) wave pattern emanating from the western Pacific. Finally, the third SST variability mode is located over the southwestern South Pacific. The composites indicate that warmer waters are associated with enhanced precipitation over the SACZ and drought conditions over the sub-tropics. There is a PSA-like wave train emanating from Indonesia towards SA, and another crossing the Southern Hemisphere in the extra-tropics, probably associated with transient activity. The GCM is able to reproduce the anomalous precipitation pattern, although it is weaker than observed. The PSA-like pattern is simulated, but the model fails in reproducing the extra-tropical wave activity.
Resumo:
A relatively large amount of variation occurs in the reproductive ecology of tropical snakes, and this variation is generally regarded as being a consequence of seasonality in climate and prey availability. In some groups, even closely related species may differ in their reproductive ecology; however, in others it seems to be very conservative. Here we explore whether characters related to reproduction are phylogenetically constrained in a monophyletic group of snakes, the subfamily Dipsadinae, which ranges from Mexico to southern South America. We provide original data on reproduction for Leptodeira annulata, Imantodes cenchoa, and three species of Sibynomorphus from southern, southeastern and central Brazil, and data from literature for other species and populations of dipsadines. Follicular cycles were seasonal in Atractus reticulatus, Dipsa, albifrons, Hypsiglena torquata, Leptodeira maculata, L. punctata, Sibynomorphus spp. and Sibon sanniola from areas where climate is seasonal. In contrast, extended or continuous follicular cycles were recorded in Dipsas catesbyi, D. neivai, Imantodes cenchoa, Leptodeira annulata, and Ninia maculata from areas with seasonal and aseasonal climates. Testicular cycles also varied from seasonal (in H. torquiata) to continuous (in Dipsa,5 spp., Leptodeira annulata, L. maculata, N. maculata, and Sibynomorphus spp.). Most dipsadines are small (less than 500 rum SVL), and females attain sexual maturity with similar relative body size than males. Sexual dimorphism occurred in terms of SVL and tail length in most species, and clutch size tended to be small (less than five eggs). Combat behavior occurs in Imantodes cenchoa, which did not show sexual size dimorphism. Reproductive timing, for both females and males, varied among species but in general there were no differences between the tribes of Dipsadinae in most of the reproductive characteristics, such as mean body size, relative size at sexual maturity, sexual size and tail dimorphism, duration of vitellogenesis or egg-carrying in oviducts.
Resumo:
Habitat use affects food intake, reproductive fitness and body temperature control in reptiles. Habitat use depends on both the characteristics of the animal and the environmental heterogeneity. In this study we investigated habitat use in a population of the South-American rattlesnake, Crotalus durissus, in a cerrado (the Brazilian savanna) remnant, in south-eastern Brazil. In general, snakes appeared to be thermal generalists. However, they showed substrate temperature preferences in the rainy season, when they selected colder substrates during the day and warmer substrates at night. Individuals were predominantly active on the surface and more frequently found under bushes. Furthermore, in general, the principal component analysis results indicate that rattlesnakes are generalists regarding the microhabitat variables examined in this study. These habitat characteristics, associated with a low thermal selectivity, indicate that rattlesnakes are able to colonize deforested areas where shade occurrence and vegetation cover are similar to those in the cerrado.
Resumo:
Fecal samples and behavioral data were collected at a fortnightly basis during 11 months period from free-living male American kestrels living in southeast Brazil (22 degrees S latitude). The aim was to investigate the seasonal changes in testicular and adrenal steroidogenic activity and their correlation to reproductive behaviors and environmental factors. The results revealed that monthly mean of fecal glucocorticoid metabolites in May and June were higher than those estimated in November. in parallel, monthly mean of androgen metabolites in September was higher than those from January to April and from October to November. Molt took place from January to March, whereas copulation was observed from June to October but peaked in September. Nest activity and food transfer to females occurred predominantly in October, and parental behavior was noticed only in November. Territorial aggressions were rare and scattered throughout the year. Multiple regression analysis revealed that fecal androgen levels are predicted by photoperiod and copulation, while fecal glucocorticoid levels are only predicted by photoperiod. Bivariate correlations showed that fecal androgen metabolites were positively correlated with fecal glucocorticoid metabolites and copulation, but negatively correlated with molt. Additionally, copulation was positively correlated with food transfer to females and nest activity, but negatively correlated with molt. These findings suggest that male American kestrels living in southeast Brazil exhibit significant seasonal changes in fecal androgen and glucocorticoid concentrations, which seem to be stimulated by decreasing daylength but not by rainfall or temperature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The variations of tropical precipitation are antiphased between the hemispheres on orbital timescales. This antiphasing arises through the alternating strength of incoming solar radiation in the two hemispheres, which affects monsoon intensity and hence the position of the meridional atmospheric circulation of the Hadley cells(1-4). Here we compare an oxygen isotopic record recovered from a speleothem from northeast Brazil for the past 26,000 years with existing reconstructions of precipitation in tropical South America(5-8). During the Holocene, we identify a similar, but zonally oriented, antiphasing of precipitation within the same hemisphere: northeast Brazil experiences humid conditions during low summer insolation and aridity when summer insolation is high, whereas the rest of southern tropical South America shows opposite characteristics. Simulations with a general circulation model that incorporates isotopic variations support this pattern as well as the link to insolation-driven monsoon activity. Our results suggest that convective heating over tropical South America and associated adjustments in large-scale subsidence over northeast Brazil lead to a remote forcing of the South American monsoon, which determines most of the precipitation changes in the region on orbital timescales.