2 resultados para Game of rules

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimating the sizes of hard-to-count populations is a challenging and important problem that occurs frequently in social science, public health, and public policy. This problem is particularly pressing in HIV/AIDS research because estimates of the sizes of the most at-risk populations-illicit drug users, men who have sex with men, and sex workers-are needed for designing, evaluating, and funding programs to curb the spread of the disease. A promising new approach in this area is the network scale-up method, which uses information about the personal networks of respondents to make population size estimates. However, if the target population has low social visibility, as is likely to be the case in HIV/AIDS research, scale-up estimates will be too low. In this paper we develop a game-like activity that we call the game of contacts in order to estimate the social visibility of groups, and report results from a study of heavy drug users in Curitiba, Brazil (n = 294). The game produced estimates of social visibility that were consistent with qualitative expectations but of surprising magnitude. Further, a number of checks suggest that the data are high-quality. While motivated by the specific problem of population size estimation, our method could be used by researchers more broadly and adds to long-standing efforts to combine the richness of social network analysis with the power and scale of sample surveys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.