4 resultados para Game laws
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Estimating the sizes of hard-to-count populations is a challenging and important problem that occurs frequently in social science, public health, and public policy. This problem is particularly pressing in HIV/AIDS research because estimates of the sizes of the most at-risk populations-illicit drug users, men who have sex with men, and sex workers-are needed for designing, evaluating, and funding programs to curb the spread of the disease. A promising new approach in this area is the network scale-up method, which uses information about the personal networks of respondents to make population size estimates. However, if the target population has low social visibility, as is likely to be the case in HIV/AIDS research, scale-up estimates will be too low. In this paper we develop a game-like activity that we call the game of contacts in order to estimate the social visibility of groups, and report results from a study of heavy drug users in Curitiba, Brazil (n = 294). The game produced estimates of social visibility that were consistent with qualitative expectations but of surprising magnitude. Further, a number of checks suggest that the data are high-quality. While motivated by the specific problem of population size estimation, our method could be used by researchers more broadly and adds to long-standing efforts to combine the richness of social network analysis with the power and scale of sample surveys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conservation laws have provided an elegant and efficient tool to evaluate the open string field theory interaction vertex, they have been originally implemented in the case where the string field is expanded in the Virasoro basis. In this work we derive conservation laws in the case where the string field is expanded in the so-called sliver L(0)-basis. As an application of this new set of conservation laws, we compute the open string field action relevant to the tachyon condensation and in order to present not only an illustration but also an additional information, we evaluate the action without imposing a gauge choice.
Resumo:
Structured meaning-signal mappings, i.e., mappings that preserve neighborhood relationships by associating similar signals with similar meanings, are advantageous in an environment where signals are corrupted by noise and sub-optimal meaning inferences are rewarded as well. The evolution of these mappings, however, cannot be explained within a traditional language evolutionary game scenario in which individuals meet randomly because the evolutionary dynamics is trapped in local maxima that do not reflect the structure of the meaning and signal spaces. Here we use a simple game theoretical model to show analytically that when individuals adopting the same communication code meet more frequently than individuals using different codes-a result of the spatial organization of the population-then advantageous linguistic innovations can spread and take over the population. In addition, we report results of simulations in which an individual can communicate only with its K nearest neighbors and show that the probability that the lineage of a mutant that uses a more efficient communication code becomes fixed decreases exponentially with increasing K. These findings support the mother tongue hypothesis that human language evolved as a communication system used among kin, especially between mothers and offspring.
Resumo:
In this work an efficient third order non-linear finite difference scheme for solving adaptively hyperbolic systems of one-dimensional conservation laws is developed. The method is based oil applying to the solution of the differential equation an interpolating wavelet transform at each time step, generating a multilevel representation for the solution, which is thresholded and a sparse point representation is generated. The numerical fluxes obtained by a Lax-Friedrichs flux splitting are evaluated oil the sparse grid by an essentially non-oscillatory (ENO) approximation, which chooses the locally smoothest stencil among all the possibilities for each point of the sparse grid. The time evolution of the differential operator is done on this sparse representation by a total variation diminishing (TVD) Runge-Kutta method. Four classical examples of initial value problems for the Euler equations of gas dynamics are accurately solved and their sparse solutions are analyzed with respect to the threshold parameters, confirming the efficiency of the wavelet transform as an adaptive grid generation technique. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.