1 resultado para Galileo
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Teutsch 145 and Teutsch 146 are shown to be open clusters (OCs) orbiting well inside the solar circle, a region where several dynamical processes combine to disrupt most OCs on a time-scale of a few 108 yr. BVI photometry from the GALILEO telescope is used to investigate the nature and derive the fundamental and structural parameters of the optically faint and poorly known OCs Teutsch 145 and 146. These parameters are computed by means of field-star-decontaminated colour-magnitude diagrams and stellar radial density profiles (RDPs). Cluster mass estimates are made based on the intrinsic mass functions (MFs). We derive the ages 200+100(-50) and 400 +/- 100 Myr, and the distances from the Sun d(circle dot) = 2.7 +/- 0.3 and 3.8 +/- 0.2 kpc, respectively, for Teutsch 145 and 146. Their integrated apparent and absolute magnitudes are m(V) approximate to 12.4 and 13.3 and M(V) approximate to -5.6 and -5.3. The MFs (detected for stars with m greater than or similar to 1 M(circle dot)) have slopes similar to Salpeter`s initial mass function. Extrapolated to the H-burning limit, the MFs would produce total stellar masses of similar to 1400 M(circle dot), typical of relatively massive OCs. Both OCs are located deep into the inner Galaxy and close to the Crux-Scutum arm. Since cluster-disruption processes are important, their primordial masses must have been higher than the present-day values. The conspicuous stellar density excess observed in the innermost bin of both RDPs might reflect the dynamical effects induced by a few 108 yr of external tidal stress.