17 resultados para Galerkin, Mètodes de

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a discontinuous-Galerkin-based immersed boundary method for elasticity problems. The resulting numerical scheme does not require boundary fitting meshes and avoids boundary locking by switching the elements intersected by the boundary to a discontinuous Galerkin approximation. Special emphasis is placed on the construction of a method that retains an optimal convergence rate in the presence of non-homogeneous essential and natural boundary conditions. The role of each one of the approximations introduced is illustrated by analyzing an analog problem in one spatial dimension. Finally, extensive two- and three-dimensional numerical experiments on linear and nonlinear elasticity problems verify that the proposed method leads to optimal convergence rates under combinations of essential and natural boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design and investigate a sequential discontinuous Galerkin method to approximate two-phase immiscible incompressible flows in heterogeneous porous media with discontinuous capillary pressures. The nonlinear interface conditions are enforced weakly through an adequate design of the penalties on interelement jumps of the pressure and the saturation. An accurate reconstruction of the total velocity is considered in the Raviart-Thomas(-Nedelec) finite element spaces, together with diffusivity-dependent weighted averages to cope with degeneracies in the saturation equation and with media heterogeneities. The proposed method is assessed on one-dimensional test cases exhibiting rough solutions, degeneracies, and capillary barriers. Stable and accurate solutions are obtained without limiters. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider Discontinuous Galerkin approximations of two-phase, immiscible porous media flows in the global pressure/fractional flow formulation with capillary pressure. A sequential approach is used with a backward Euler step for the saturation equation, equal-order interpolation for the pressure and the saturation, and without any limiters. An accurate total velocity field is recovered from the global pressure equation to be used in the saturation equation. Numerical experiments show the advantages of the proposed reconstruction. To cite this article: A. Ern et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selection criteria for Euler-Bernoulli or Timoshenko beam theories are generally given by means of some deterministic rule involving beam dimensions. The Euler-Bernoulli beam theory is used to model the behavior of flexure-dominated (or ""long"") beams. The Timoshenko theory applies for shear-dominated (or ""short"") beams. In the mid-length range, both theories should be equivalent, and some agreement between them would be expected. Indeed, it is shown in the paper that, for some mid-length beams, the deterministic displacement responses for the two theories agrees very well. However, the article points out that the behavior of the two beam models is radically different in terms of uncertainty propagation. In the paper, some beam parameters are modeled as parameterized stochastic processes. The two formulations are implemented and solved via a Monte Carlo-Galerkin scheme. It is shown that, for uncertain elasticity modulus, propagation of uncertainty to the displacement response is much larger for Timoshenko beams than for Euler-Bernoulli beams. On the other hand, propagation of the uncertainty for random beam height is much larger for Euler beam displacements. Hence, any reliability or risk analysis becomes completely dependent on the beam theory employed. The authors believe this is not widely acknowledged by the structural safety or stochastic mechanics communities. (C) 2010 Elsevier Ltd. All rights reserved.