96 resultados para GRAVITY-FIELD
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sea surface gradients derived from the Geosat and ERS-1 satellite altimetry geodetic missions were integrated with marine gravity data from the National Geophysical Data Center and Brazilian national surveys. Using the least squares collocation method, models of free-air gravity anomaly and geoid height were calculated for the coast of Brazil with a resolution of 2` x 2`. The integration of satellite and shipborne data showed better statistical results in regions near the coast than using satellite data only, suggesting an improvement when compared to the state-of-the-art global gravity models. Furthermore, these results were obtained with considerably less input information than was used by those reference models. The least squares collocation presented a very low content of high-frequency noise in the predicted gravity anomalies. This may be considered essential to improve the high resolution representation of the gravity field in regions of ocean-continent transition. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The least squares collocation is a mathematical technique which is used in Geodesy for representation of the Earth's anomalous gravity field from heterogeneous data in type and precision. The use of this technique in the representation of the gravity field requires the statistical characteristics of data through covariance function. The covariances reflect the behavior of the gravity field, in magnitude and roughness. From the statistical point of view, the covariance function represents the statistical dependence among quantities of the gravity field at distinct points or, in other words, shows the tendency to have the same magnitude and the same sign. The determination of the covariance functions is necessary either to describe the behavior of the gravity field or to evaluate its functionals. This paper aims at presenting the results of a study on the plane and spherical covariance functions in determining gravimetric geoid models.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
We study holographic superconductors in Einstein-Gauss-Bonnet gravity. We consider two particular backgrounds: a d-dimensional Gauss-Bonnet-AdS black hole and a Gauss-Bonnet-AdS soliton. We discuss in detail the effects that the mass of the scalar field, the Gauss-Bonnet coupling and the dimensionality of the AdS space have on the condensation formation and conductivity. We also study the ratio omega(g)/T(c) for various masses of the scalar field and Gauss-Bonnet couplings.
Resumo:
We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.
Resumo:
has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for back-reaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
Resumo:
Vector field formulation based on the Poisson theorem allows an automatic determination of rock physical properties (magnetization to density ratio-MDR-and the magnetization inclination-MI) from combined processing of gravity and magnetic geophysical data. The basic assumptions (i.e., Poisson conditions) are: that gravity and magnetic fields share common sources, and that these sources have a uniform magnetization direction and MDR. In addition, the previously existing formulation was restricted to profile data, and assumed sufficiently elongated (2-D) sources. For sources that violate Poisson conditions or have a 3-D geometry, the apparent values of MDR and MI that are generated in this way have an unclear relationship to the actual properties in the subsurface. We present Fortran programs that estimate MDR and MI values for 3-D sources through processing of gridded gravity and magnetic data. Tests with simple geophysical models indicate that magnetization polarity can be successfully recovered by MDR-MI processing, even in cases where juxtaposed bodies cannot be clearly distinguished on the basis of anomaly data. These results may be useful in crustal studies, especially in mapping magnetization polarity from marine-based gravity and magnetic data. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
It is shown that in quantum gravity at finite temperature, the effective potential evaluated in the tadpole approximation can have a local minimum below a certain critical temperature. However, when the leading higher order thermal loop corrections are included, one finds that no static solution exists at high temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
The clingfish Gobiesox barbatulus shows nocturnal feeding activity, spending most part of the day stationary and adhered to the inferior part of stones. To feed, this species uses the sit-and-wait and particulate feeding tactics. It shows a carnivorous feeding habit mostly consuming small benthic crustaceans. It can move in two ways: (1) "stone-by-stone", sliding its ventral sucker disc across each stone and (2) "surf", when it takes advantage of the energy of the ebbing tide to quickly cross a distance up to four times its body length. Its reproductive season occurs between the end of spring and the beginning of summer, during which time it lays about 2,000 adhesive eggs of 1 mm each in a single layer under stones. It has more than one egg-laying session per reproductive season, therefore showing several different developmental stages. It performs fanning, mouthing and guarding of the eggs as forms of parental care. Data shown here also indicates that G. barbatulus has some shelter fidelity, being probably territorial.