11 resultados para GFP reporter yeast

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to research Candida dubliniensis among isolates present in a Brazilian yeast collection and to evaluate the main phenotypic methods for discrimination between C. albicans and C. dubliniensis from oral cavity. A total of 200 isolates, presumptively identified as C. albicans or C. dubliniensis obtained from heart transplant patients under immunosuppressive therapy, tuberculosis patients under antibiotic therapy, HIV-positive patients under antiretroviral therapy, and healthy subjects, were analyzed using the following phenotypic tests: formation and structural arrangement of chlamydospores on corn meal agar, casein agar, tobacco agar, and sunflower seed agar; growth at 45 degrees C; and germ tube formation. All strains were analyzed by polymerase chain reaction (PCR). In a preliminary screen for C. dubliniensis, 48 of the 200 isolates on corn meal agar, 30 of the 200 on casein agar, 16 of the 200 on tobacco agar, and 15 of the 200 on sunflower seed agar produced chlamydoconidia; 27 of the 200 isolates showed no or poor growth at 45 degrees C. All isolates were positive for germ tube formation. These isolates were considered suggestive of C. dubliniensis. All of them were subjected to PCR analysis using C. dubliniensis-specific primers. C. dubliniensis isolates were not found. C. dubliniensis isolates were not recovered in this study done with immunocompromised patients. Sunflower seed agar was the medium with the smallest number of isolates of C. albicans suggestive of C. dubliniensis. None of the phenotypic methods was 100% effective for discrimination between C. albicans and C. dubliniensis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial GatCAB operon for tRNA-dependent amidotransferase (AdT) catalyzes the transamidation of mischarged glutamyl-tRNA(Gln) to glutaminyl-tRNA(Gln). Here we describe the phenotype of temperature-sensitive (ts) mutants of GTF1, a gene proposed to code for subunit F of mitochondrial AdT in Saccharomyces cerevisiae. The ts gtf1 mutants accumulate an electrophoretic variant of the mitochondrially encoded Cox2p subunit of cytochrome oxidase and an unstable form of the Atp8p subunit of the F(1)-F(0) ATP synthase that is degraded, thereby preventing assembly of the F(0) sector. Allotopic expression of recoded ATP8 and COX2 did not significantly improve growth of gtf1 mutants on respiratory substrates. However, ts gft1 mutants are partially rescued by overexpression of PET112 and HER2 that code for the yeast homologues of the catalytic subunits of bacterial AdT. Additionally, B66, a her2 point mutant has a phenotype similar to that of gtf1 mutants. These results provide genetic support for the essentiality, in vivo, of the GatF subunit of the heterotrimeric AdT that catalyzes formation of glutaminyl-tRNA(Gln) (Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Genes Dev. 23, 1119-1130).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi, the etiologic agent for Chagas` disease, has requirements for several cofactors, one of which is heme. Because this organism is unable to synthesize heme, which serves as a prosthetic group for several heme proteins (including the respiratory chain complexes), it therefore must be acquired from the environment. Considering this deficiency, it is an open question as to how heme A, the essential cofactor for eukaryotic CcO enzymes, is acquired by this parasite. In the present work, we provide evidence for the presence and functionality of genes coding for heme O and heme A synthases, which catalyze the synthesis of heme O and its conversion into heme A, respectively. The functions of these T. cruzi proteins were evaluated using yeast complementation assays, and the mRNA levels of their respective genes were analyzed at the different T. cruzi life stages. It was observed that the amount of mRNA coding for these proteins changes during the parasite life cycle, suggesting that this variation could reflect different respiratory requirements in the different parasite life stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular and molecular characteristics of a cell line (BME26) derived from embryos of the cattle tick Rhipicephalus (Boophilus) microplus were studied. The cells contained glycogen inclusions, numerous mitochondria, and vesicles with heterogeneous electron densities dispersed throughout the cytoplasm. Vesicles contained lipids and sequestered palladium meso-porphyrin (Pd-mP) and rhodamine-hemoglobin, suggesting their involvement in the autophagic and endocytic pathways. The cells phagocytosed yeast and expressed genes encoding the antimicrobial peptides (microplusin and defensin). A cDNA library was made and 898 unique mRNA sequences were obtained. Among them, 556 sequences were not significantly similar to any sequence found in public databases. Annotation using Gene Ontology revealed transcripts related to several different functional classes. We identified transcripts involved in immune response such as ferritin, serine proteases, protease inhibitors,. antimicrobial peptides, heat shock protein, glutathione S-transferase, peroxidase, and NADPH oxidase. BME26 cells transfected with a plasmid carrying a red fluorescent protein reporter gene (DsRed2) transiently expressed DsRed2 for up to 5 weeks. We conclude that BME26 can be used to experimentally analyze diverse biological processes that occur in R. (B.) microplus such as the innate immune response to tick-borne pathogens. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins - eIF5A(K56A) and eIF5A(Q22H,L93F)- and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oroidin was isolated from the marine sponge Agelas sventres and inhibited the activity and function of Pdr5p, an enzyme responsible for the multidrug resistance phenotype in Saccharomyces cerevisiae. This compound may help in the development of new drugs that reverse this dangerous phenotype of pathogenic yeast and fungi.