114 resultados para GABA-A receptors

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM L-NAME (a non-selective NOS inhibitor), 1 MM D-NAME (an inactive enantiomere of L-NAME), 1 mM kynurenic acid (a nonselective ionotropic receptors antagonist) or 20 mu M bicuculline (a selective GABA(A) receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU: caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, D-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by L-glutamate and GABA. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial. or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial. or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The moxidectin (MXD) is an antiparasitic drug used in domestic animals. The mechanism of action, in mammals, involves GABA, a neurotransmitter with an important role in the sexual behavior control. Presently, the effects of 0.2 mg/kg therapeutic dose were studied on sexual behavior, sexual motivation, penile erection and central GABA levels. Sexual behavior results showed increased latencies to the first mount and intromission as well as in inter-intromission interval; a reduction in total mounts was detected on the drug post-treatment. No difference was observed between sexual motivation of control and experimental animals. MXD treatment reduced penile erection and hypothalamic GABA levels. The results suggest that MXD reduced sexual behavior and penile erection by an action on the hypothalamic GABA system. Probably, the lack of effects in the motivational test and the increased mount and intromission latencies as well as decreased total mounts could be explained as a consequence of reduced male rat erection process. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous evidence has shown that facilitation of GABA/benzodiazepine-mediated neurotransmission in the ventromedial hypothalamus (VMH) inhibits both escape and inhibitory avoidance responses generated in the elevated T-maze test of anxiety (ETM). These defensive behaviors have been associated with panic and generalized anxiety, respectively. Aside from GABA/benzodiazepine receptors, the VMH also contains a significant number of serotonin (5-HT) receptors, including 1A, 2A and 2C subtypes. The purpose of the present study was to investigate the effect of the activation of 5-HT(1A) and 5-HT(2A/2C) receptors in the VMH on defensive behavioral responses in rats submitted to the ETM. For that, male Wistar rats were treated intra-VMH with the 5-HT(1A) agonist 8-OH-DPAT, with the 5-HT(2A/2C) agonist DOI, with the 5-HT(2C) selective agonist MK-212, or with the 5-HT(2A/2C) antagonist ketanserin and 10 min after were submitted to the ETM. Results showed that both DOI and MK-212 significantly decreased avoidance measurements, an anxiolytic-like effect, without altering escape. 8-OH-DPAT and ketanserin were without effect, although the last drug attenuated the effects of DOI. None of the drugs altered locomotor activity in an open field. These results suggest that 5-HT(2A/2C) receptors of the VMH are involved in the regulation of inhibitory avoidance and might be of relevance to the physiopathology of generalized anxiety. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ivermectin (IVM) is an antiparasitic drug, widely used in domestic animals. In mammals, IVM act as a GABA agonist. This neurotransmitter has an important role in the regulation of sexual behavior. Thus, this study sought to investigate the effects of various medically relevant doses IVM on the sexual behavior of male rats. In particular, we also wished to examine if previous sexual experience modulated responses to IVM. In the first experiment, the sexual behavior of inexperienced male rats was analyzed after they received 0.2, 0.6, 1.0 or 2.0 mg/kg IVM, 15 mm prior to behavioral testing. In the second experiment, the effects of four previous sexual experiences on IVM treated rats (1.0 or 2.0 mg/kg, 15 min prior to the 5th session) were assessed. The standard therapeutic dose (0.2 mg/kg) did not impair the sexual behavior of inexperienced male rats. At a more concentrated dose (0.6 mg/kg), which is still within the therapeutic range, the appetitive phase of sexual behavior of inexperienced male rats was impaired. Likewise, 1.0 mg/kg impaired the appetitive phase. Previous sexual experience blocked almost entirely this sexual impairment, suggesting that previous sexual experience exerts a positive effect in attenuating the sexual impairment produced by IVM treatment. Therefore, the standard therapeutic dose of IVM can be used without producing side effects on sexual behavior. Use of more concentrated therapeutic doses is not recommended during reproductive periods, unless the animals have had previous sexual experience. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and humans. The aim of this study was to assess the involvement of the dorsal raphe nucleus (DRN) in the post-ictal antinociception. The second aim was to study the role of serotonergic intrinsic mechanisms of the DRN in this hypo-algesic phenomenon. Pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl- influx antagonist, was peripherally used to induce tonic-clonic seizures in Wistar rats. The nociceptive threshold was measured by the tail-flick test. Neurochemical lesions of the DRN, performed with microinjection of ibotenic acid (1.0 mu g/0.2 mu L), caused a significant decrease of tonic-clonic seizure-induced antinociception, suggesting the involvement of this nucleus in this antinociceptive Process. Microinjections of methysergide (1.0 and 5.0 mu g/0.2 mu L), a non-selective serotonergic receptor antagonist, into DRN caused a significant decrease in the post-ictal antinociception in seizing animals, compared to controls, in all post-ictal periods Presently studied. These findings were corroborated by microinjections of ketanserin (at 1.0 and 5.0 mu g/0.2 mu L) into DRN. Ketanserin is an antagonist with large affinity for 5-HT2A/2C serotonergic receptors, which, in this Case, Caused a significant decrease in the tail-flick latencies in seizing animals, compared to controls after the first 20 min following tonic-clonic convulsive reactions. These results indicate that serotonergic neurotransmission of the DRN neuronal clusters is involved in the organization of the post-ictal hypo-algesia. The 5-HT2A/2C receptors of DRN neurons seem to be critically involved in the increase of nociceptive thresholds following tonic-clonic seizures. (c) 2008 Elsevier Inc, All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABA(A) receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT(1A) and 5-HT(2A/2c) receptor antagonists, did not alter BDNF`s effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.