152 resultados para Functional Connectivity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods: Thirty-one BD (type 1; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results: The BD versus HC showed significantly greater right amygdala-OFC FC (p <= .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions: In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC-FA relationships in BID and HC require further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap-crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae, and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap-crossing trials. Models that included gap-crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap-crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Abnormalities in the morphology and function of two gray matter structures central to emotional processing, the perigenual anterior cingulate cortex (pACC) and amygdala, have consistently been reported in bipolar disorder (BD). Evidence implicates abnormalities in their connectivity in BD. This study investigates the potential disruptions in pACC-amygdala functional connectivity and associated abnormalities in white matter that provides structural connections between the two brain regions in BD. Methods: Thirty-three individuals with BD and 31 healthy comparison subjects (HC) participated in a scanning session during which functional magnetic resonance imaging (fMRI) during processing of face stimuli and diffusion tensor imaging (DTI) were performed. The strength of pACC-amygdala functional connections was compared between BD and HC groups, and associations between these functional connectivity measures from the fMRI scans and regional fractional anisotropy (FA) from the DTI scans were assessed. Results: Functional connectivity was decreased between the pACC and amygdala in the BD group compared with HC group, during the processing of fearful and happy faces (p < .005). Moreover, a significant positive association between pACC-amygdala functional coupling and FA in ventrofrontal white matter, including the region of the uncinate fasciculus, was identified (p < .005). Conclusion: This study provides evidence for abnormalities in pACC-amygdala functional connectivity during emotional processing in BD. The significant association between pACC-amygdala functional connectivity and the structural integrity of white matter that contains pACC-amygdala connections suggest that disruptions in white matter connectivity may contribute to disturbances in the coordinated responses of the pACC and amygdala during emotional processing in BD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) has become an important tool in Neuroscience due to its noninvasive and high spatial resolution properties compared to other methods like PET or EEG. Characterization of the neural connectivity has been the aim of several cognitive researches, as the interactions among cortical areas lie at the heart of many brain dysfunctions and mental disorders. Several methods like correlation analysis, structural equation modeling, and dynamic causal models have been proposed to quantify connectivity strength. An important concept related to connectivity modeling is Granger causality, which is one of the most popular definitions for the measure of directional dependence between time series. In this article, we propose the application of the partial directed coherence (PDC) for the connectivity analysis of multisubject fMRI data using multivariate bootstrap. PDC is a frequency domain counterpart of Granger causality and has become a very prominent tool in EEG studies. The achieved frequency decomposition of connectivity is useful in separating interactions from neural modules from those originating in scanner noise, breath, and heart beating. Real fMRI dataset of six subjects executing a language processing protocol was used for the analysis of connectivity. Hum Brain Mapp 30:452-461, 2009. (C) 2007 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The application of functional magnetic resonance imaging (fMRI) in neuroscience studies has increased enormously in the last decade. Although primarily used to map brain regions activated by specific stimuli, many studies have shown that fMRI can also be useful in identifying interactions between brain regions (functional and effective connectivity). Despite the widespread use of fMRI as a research tool, clinical applications of brain connectivity as studied by fMRI are not well established. One possible explanation is the lack of normal pattern, and intersubject variability-two variables that are still largely uncharacterized in most patient populations of interest. In the current study, we combine the identification of functional connectivity networks extracted by using Spearman partial correlation with the use of a one-class support vector machine in order construct a normative database. An application of this approach is illustrated using an fMRI dataset of 43 healthy Subjects performing a visual working memory task. In addition, the relationships between the results obtained and behavioral data are explored. Hum Brain Mapp 30:1068-1076, 2009. (C) 2008 Wiley-Liss. Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is known that large fragment sizes and high connectivity levels are key components for maintaining species in fragments; however, their relative effects are poorly understood, especially in tropical areas. In order to test these effects, we built models for explaining understory birds occurrence in a fragmented Atlantic Rain Forest landscape with intermediate habitat cover (3%). Data from over 9000 mist-net hours from 17 fragments differing in size (2-175 ha) and connectivity (considering corridor linkages and distance to nearby fragments) were ranked under a model selection approach. A total 1293 individuals of 62 species were recorded. Species richness, abundance and compositional variation were mainly affected by connectivity indices that consider the capacity of species to use corridors and/or to cross short distances up to 30 m through the matrix. Bird functional groups were differently affected by area and connectivity: while terrestrial insectivores, omnivores and frugivores were affected by both area and connectivity, the other groups (understory insectivores, nectarivores, and others) were affected only by connectivity. In the studied landscape, well connected fragments can sustain an elevated number of species and individuals. Connectivity gives the opportunity for individuals to use multiple fragments, reducing the influence of fragment size. While preserving large fragments is a conservation target worldwide and should continue to be, our results indicated that connectivity between fragments can enhance the area functionally connected and is beneficial to all functional groups and therefore should be a conservation priority. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variables influencing decision-making in real settings, as in the case of voting decisions, are uncontrollable and in many times even unknown to the experimenter. In this case, the experimenter has to study the intention to decide (vote) as close as possible in time to the moment of the real decision (election day). Here, we investigated the brain activity associated with the voting intention declared 1 week before the election day of the Brazilian Firearms Control Referendum about prohibiting the commerce of firearms. Two alliances arose in the Congress to run the campaigns for YES (for the prohibition of firearm commerce) and NO (against the prohibition of firearm commerce) voting. Time constraints imposed by the necessity of studying a reasonable number (here, 32) of voters during a very short time (5 days) made the EEG the tool of choice for recording the brain activity associated with voting decision. Recent fMRI and EEG studies have shown decision-making as a process due to the enrollment of defined neuronal networks. In this work, a special EEG technique is applied to study the topology of the voting decision-making networks and is compared to the results of standard ERP procedures. The results show that voting decision-making enrolled networks in charge of calculating the benefits and risks of the decision of prohibiting or allowing firearm commerce and that the topology of such networks was vote-(i.e., YES/NO-) sensitive. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Edge effects are suggested to have great impact on the persistence of species in fragmented landscapes. We tested edge avoidance by forest understory passerines in the Brazilian Atlantic Rainforest and also compared their mobility and movement patterns in contiguous and fragmented landscapes to assess whether movements would increase in the fragmented landscape. Between 2003 and 2005, 96 Chiroxiphia caudata, 38 Pyriglena leucoptera and 27 Sclerurus scansor were radio-tracked. The most strictly forest species C. caudata and S scansor avoided forest edges while P leucoptera showed affinities for the edge Both sensitive species showed larger mean step length and maximal observed daily distance in the fragmented forest versus the unfragmented forest. P. leucoptera did not show any significant difference. There were no significant differences in proportional daily home range use for any of the three species. Our results suggested that fragmentation and the consequent increase in edge areas do influence movement behavior of sensitive forest understory birds that avoided the use of edges and increased the speed and distance they covered daily. For the most restricted forest species, it would be advisable to protect larger patches of forest instead of many small or medium fragments connected by narrow corridors. However, by comparing our data with that obtained earlier, we concluded that movement behavior of resident birds differs from that of dispersing birds and might not allow to infer functional connectivity or landscape-scale sensitivity to fragmentation; a fact that should be taken into consideration when suggesting conservation strategies. (c) 2008 Elsevier Ltd. All rights reserved.