6 resultados para Front Drives.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Deforestation in Brazilian Amazonia accounts for a disproportionate global scale fraction of both carbon emissions from biomass burning and biodiversity erosion through habitat loss. Here we use field- and remote-sensing data to examine the effects of private landholding size on the amount and type of forest cover retained within economically active rural properties in an aging southern Amazonian deforestation frontier. Data on both upland and riparian forest cover from a survey of 300 rural properties indicated that 49.4% (SD = 29.0%) of the total forest cover was maintained as of 2007. and that property size is a key regional-scale determinant of patterns of deforestation and land-use change. Small properties (<= 150 ha) retained a lower proportion of forest (20.7%, SD = 17.6) than did large properties (>150 ha; 55.6%, SD = 27.2). Generalized linear models showed that property size had a positive effect on remaining areas of both upland and total forest cover. Using a Landsat time-series, the age of first clear-cutting that could be mapped within the boundaries of each property had a negative effect on the proportion of upland, riparian, and total forest cover retained. Based on these data, we show contrasts in land-use strategies between smallholders and largeholders, as well as differences in compliance with legal requirements in relation to minimum forest cover set-asides within private landholdings. This suggests that property size structure must be explicitly considered in landscape-scale conservation planning initiatives guiding agro-pastoral frontier expansion into remaining areas of tropical forest. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Land use leads to massive habitat destruction and fragmentation in tropical forests. Despite its global dimensions the effects of fragmentation on ecosystem dynamics are not well understood due to the complexity of the problem. We present a simulation analysis performed by the individual-based model FORMIND. The model was applied to the Brazilian Atlantic Forest, one of the world`s biodiversity hot spots, at the Plateau of Sao Paulo. This study investigates the long-term effects of fragmentation processes on structure and dynamics of different sized remnant tropical forest fragments (1-100 ha) at community and plant functional type (PFT) level. We disentangle the interplay of single effects of different key fragmentation processes (edge mortality, increased mortality of large trees, local seed loss and external seed rain) using simulation experiments in a full factorial design. Our analysis reveals that particularly small forest fragments below 25 ha suffer substantial structural changes, biomass and biodiversity loss in the long term. At community level biomass is reduced up to 60%. Two thirds of the mid- and late-successional species groups, especially shade-tolerant (late successional climax) species groups are prone of extinction in small fragments. The shade-tolerant species groups were most strongly affected; its tree number was reduced more than 60% mainly by increased edge mortality. This process proved to be the most powerful of those investigated, explaining alone more than 80% of the changes observed for this group. External seed rain was able to compensate approximately 30% of the observed fragmentation effects for shade-tolerant species. Our results suggest that tropical forest fragments will suffer strong structural changes in the long term, leading to tree species impoverishment. They may reach a new equilibrium with a substantially reduced subset of the initial species pool, and are driven towards an earlier successional state. The natural regeneration potential of a landscape scattered with forest fragments appears to be limited, as external seed rain is not able to fully compensate for the observed fragmentation-induced changes. Our findings suggest basic recommendations for the management of fragmented tropical forest landscapes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
Results from infrared photodissociation (IRPD) spectroscopy and kinetics of singly hydrated, protonated proline indicate that the water molecule hydrogen bonds preferentially to the formally neutral carboxylic acid at low temperatures and at higher temperatures to the protonated N-terminus, which bears the formal charge. Hydration isomer populations obtained from IRPD kinetic data as a function of temperature are used to generate a van`t Hoff plot that reveals that C-terminal binding is enthalpically favored by 4.2-6.4 kJ/mol, whereas N-terminal binding is entropically favored by 31-43 J/(mol K), consistent with a higher calculated barrier for water molecule rotation at the C-terminus.